
提到噪声,你会想到什么?刺耳的,高分贝的声音?总之就是不好的,不想接受的声音。小编今天跟大家分享的就是python数据清洗中的噪声数据,对于这些噪声数据我们应该怎样检测和处理呢?下面跟小编一起来看吧。
一、什么是噪声数据
噪声数据Noisy Data,噪声值,指的是数据中存在着一个或中者几个错误的,或者偏离期望值的数据,又可以叫做异常值、或者离群值(outlier),这些数据会对数据的分析造成了干扰,我们需要在python数据清洗时将这些数据清洗掉。
举一个最简单的例子来理解噪声数据,在一份统计顾客年龄的名单中,有数据为顾客年龄:-50.显然这个数据就是噪声数据。
二、噪声数据检测
噪声数据的检测方法有很多,小编这这里介绍三种最常用的方法。
1.3∂原则
数据需要服从正态分布。若一个数据分布近似正态,则大约 68% 的数据值会在均值的一个标准差范围内,大约 95% 会在两个标准差范围内,大约 99.7% 会在三个标准差范围内。在3∂原则下,异常值如超过3倍标准差,那么可以将其视为异常值。如果数据不服从正态分布,我们就可以通过远离平均距离多少倍的标准差来判定(多少倍的取值需要根据经验和实际情况来决定)。
2.箱线图是通过数据集的四分位数形成的图形化描述。是非常简单而且效的可视化离群点的一种方法。上下须为数据分布的边界,只要是高于上须,或者是低于下触须的数据点都可以认为是离群点或异常值。
下四分位数:25%分位点所对应的值(Q1)
中位数:50%分位点对应的值(Q2)
上四分位数:75%分位点所对应的值(Q3)
上须:Q3+1.5(Q3-Q1)
下须:Q1-1.5(Q3-Q1)
其中Q3-Q1表示四分位差
3.k-means
k-means是基于聚类的离群点识别方法,其主要思想是一个对象是基于聚类的离群点,如果该对象不强属于任何簇,那么该对象属于离群点。
三、噪声数据处理
噪声数据最直接简单的方法是:找到这些孤立于其他数据的记录直接删除。但是这样做有很大的缺点,很可能会都是大量有用、干净的信息。小编在这里整理了几种python数据清洗时常用的噪声数据处理方法,希望对大家有所帮助。
1.分箱
分箱法通过考察数据的“近邻”来光滑有序数据的值。有序值分布到一些桶或箱中。
分箱法包括等深分箱:每个分箱中的样本量一致;等宽分箱:每个分箱中的取值范围一致。直方图其实首先对数据进行了等宽分箱,再计算频数画图。
分箱方法是一种简单而且常用的python数据清洗方法,通过考察近邻数据来确定最终值。“分箱”其实也就是指按照属性值划分的子区间,一个属性值如果处于某个子区间范围内,就当做把该属性值放进这个子区间所代表的“箱子”内。按照一定的规则将待处理的数据(某列属性值)放进一些箱子中,考察每个箱子里的数据,并且采用某种方法对各个箱子中的数据分别进行处理。采用分箱技术的两个关键问题是:(1)如何分箱(2)如何对每个箱子中的数据进行平滑处理。
分箱的方法通常有4种,分别为:等深分箱法、等宽分箱法、最小熵法和用户自定义区间法。
(1)等深分箱法,又叫做统一权重,是指将数据集按记录行数分箱,每箱样本量一致。最简单的一种分箱方法。
(2)等宽分箱法,统一区间,使数据集在整个属性值的区间上平均分布,也就是每个分箱中的取值范围一致。
(3)用户自定义区间,用户可以根据实际情况自定义区间,使用这种方法能帮助当用户明确观察到某些区间范围内的数据分布。
2.回归
发现两个相关的变量之间的变化模式,通过使数据适合一个函数来平滑数据。
若是变量之间存在依赖关系,也就是y=f(x),那么就可以设法求出依赖关系f,再根据x来预测y,这也是回归问题的实质。实际问题中更常为见的假设是p(y)=N(f(x)),N为正态分布。假设y是观测值并且存在噪声数据,根据我们求出的x和y之间的依赖关系,再根据x来更新y的值,这样就能去除其中的随机噪声,这就是回归去噪的原理 。
相信读完上文,你对随机森林算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08