CDA数据科学研究院 CDA考试中心 CDA人工智能学院 企业服务 关于CDA

cda

全国校区

您的位置:首页 > 大数据时代 > 数据可视化|用散点图进行数据分析

数据可视化|用散点图进行数据分析

2020-07-30

散点图大家都能绘制,平常工作汇报有时也会用散点图让报表看起来更美观。但是,散点图并不是为了展示数据,而是需要数据分析,并利用数据分析的结果推动业务的增长。小编今天跟大家分享的这篇文章就是教大家如何用散点图进行数据分析的,希望对大家有所帮助。

文章来源:林骥微信公众号

作者:林骥

01

你好,我是林骥。

散点图的用途有很多,我认为它的核心价值,在于应用相关思维,发现变量之间的关系。

散点图就像一扇窗,打开它,并仔细观察,能让我们看见更多有价值的信息。

比如说,假设表格中有 10000 个客户年龄和消费金额的数据:

我们可以计算每一个年龄对应的人均消费金额,比如说,所有 20 岁客户的平均消费金额约为 1383.69 元,然后我们可以画出一张散点图

从图中可以看出,客户的年龄与人均消费金额有很强的相关性,其中应用了线性回归算法,得到一条拟合的直线,并用公式表示出来,  接近于 1 ,代表算法拟合的效果很好。

02

接下来,我们看看具体实现的步骤。

首先,导入所需的库,并设置中文字体和定义颜色等。

# 导入所需的库
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline

# 正常显示中文标签
mpl.rcParams['font.sans-serif'] = ['SimHei']

# 自动适应布局
mpl.rcParams.update({'figure.autolayout': True})

# 正常显示负号
mpl.rcParams['axes.unicode_minus'] = False

# 禁用科学计数法
pd.set_option('display.float_format', lambda x: '%.2f' % x) 

# 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色
c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF',
     '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC',
     '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}

其次,从 Excel 文件中读取数据,并调用 sklearn 中的算法,得到拟合的直线和评分结果。

# 数据源路径
filepath='./data/客户年龄和消费金额.xlsx'

# 读取 Excel文件
df = pd.read_excel(filepath, index_col='客户编号')

# 定义画图用的数据:年龄和人均消费金额
df_group = df.groupby('年龄').mean()
x = np.array(df_group.index).reshape(-1, 1)
y = np.array(df_group.values)

# 用管道的方式调用算法,以便把线性回归扩展为多项式回归
poly_reg = Pipeline([
    ('ploy', PolynomialFeatures(degree=1)),
    ('lin_reg', LinearRegression())
])

# 拟合
poly_reg.fit(x, y)

# 斜率
coef = poly_reg.steps[1][1].coef_
# 截距
intercept = poly_reg.steps[1][1].intercept_
# 评分
score = poly_reg.score(x, y)

接下来,开始用「面向对象」的方法进行画图。

# 使用「面向对象」的方法画图,定义图片的大小
fig, ax = plt.subplots(figsize=(8, 6))

# 设置标题
ax.set_title('\n客户每年长一岁,人均消费金额增加' + '%.2f' % coef[0][1] + '元\n', loc='left', size=26, color=c['深灰色'])

# 画气泡图
ax.scatter(x, y, color=c['蓝色'], marker='.', s=100, zorder=1)

# # 绘制预测线
y2 = poly_reg.predict(x)
ax.plot(x, y2, '-', c=c['橙色'], zorder=2)

# 隐藏边框
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)

# 隐藏刻度线
ax.tick_params(axis='x', which='major', length=0)
ax.tick_params(axis='y', which='major', length=0)

ax.set_ylim(15, 65)
ax.set_ylim(1000, 5000)

# 设置坐标标签字体大小和颜色
ax.tick_params(labelsize=16, colors=c['深灰色'])
ax.text(ax.get_xlim()[0]-6, ax.get_ylim()[1], '人\n均\n消\n费\n金\n额', va='top', fontsize=16, color=c['深灰色'])

# 设置坐标轴的标题
ax.text(ax.get_xlim()[0]+1, ax.get_ylim()[0]-300, '年龄', ha='left', va='top', fontsize=16, color=c['深灰色'])

# 预测 55 岁的人均消费金额
predict = poly_reg.predict([[55]])

# 标注公式
formula = r'$\mathcal{Y} = ' + '%.2f' % coef[0][1] + '\mathcal{X}' + '%+.2f$' % intercept[0] + '\n' + r'$\mathcal{R}^2 = ' + '%.5f$' % score
ax.annotate(formula, xy=(55, predict), xytext=(55, predict+500), ha='center', fontsize=12, color=c['深灰色'], arrowprops=dict(arrowstyle='->', color=c['橙色']))

plt.show()

你可以前往 https://github.com/linjiwx/mp 下载数据文件和完整代码。

03

当业务指标很多的时候,应该挑选什么指标来进行分析,这件事很考验分析者的功力,往往需要对业务有比较深刻的理解。

为什么很多人精通各种工具技术,手上也有很多各种各样的数据,却没有做出让领导满意的图表?

好的图表,就像是给近视的人戴了一副眼镜,让读者以更清楚的方式去理解数据。

好的图表,就像是神奇的催化剂,加快了从数据到决策的过程,让决策者更加快速地掌握有助于做出决策的信息。

好的图表,能把复杂的问题简单化,帮我们更精准地理解业务的现状,甚至预测未来。

我们应该记住,无论多么漂亮的图表,如果不能从中获取有价值的信息,那么也是一张没有「灵魂」的图表。

很多时候,我们面对的问题,并不是没有数据,而是数据太多,却不知道怎么用。

熟悉数据分析的思维,能帮我们找到更重要的数据,排除过多杂乱数据的干扰。

如果把数据分析比作医生看病的过程,那么可以分为以下 4 个阶段:

(1)描述:检查身体,描述指标值是否正常。

(2)诊断:询问病情,找到疾病的产生原因。

(3)预测:分析病情,预测病情的发展趋势。

(4)指导:开出药方,提出有效的治疗建议。

我们要尽可能地理解业务并提供价值,从数据的加工者,转变成故事的讲述者,甚至是问题的解决者。

完 谢谢观看

分享
收藏

OK