京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Mika
数据:真达
后期:泽龙
【导读】
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。我们今天就来聊一聊自热食品。
python技术部分请直接看第三部分。
Show me data,用数据说话
今天我们聊一聊 自热食品
疫情期间,在宅在家里的日子,主打一人食概念的自热食品备受关注。自热火锅、自热米饭、即食酸辣粉、即食螺蛳粉等方便食品的销量迎来大幅度增长。光是今年春节,自热火锅的销售暴涨就惊起讨论无数。
自热火锅,自热米饭们就这么成为了新的网红食品,持续霸占着电商销售量榜首,你吃过自热火锅吗?哪款自热食品卖得最好?今天我们就带你用数据来解读这些自热食品。
01“万物皆可自热”
自热食品就这么火了
随着自热食品越来越备受消费者的追捧,各种自热小火锅、自热米饭也成了妥妥的网红食品。一时间,各种自热食品品牌如雨后春笋涌出。自热食品的市场规模也逐年扩大,预计今年将达到40亿元。
来源:《自热食品网络关注度分析报告》—微热点大数据研究院
超市里曾经被泡面牢牢占据的方便食品货架,迅速被自热火锅、自热米饭、自热面抢走半壁江山。
目前自热食品的入局企业不仅有传统的火锅巨头,如海底捞、小龙坎;还有像三只松鼠、良品铺子等零食厂商;同时还有像自嗨锅莫小仙等主打速食品类的新兴品牌。
根据莫小仙的数据,在疫情期间的整体销量同比增长近400%。而自嗨锅3月份公布的数据显示,其线上订单量在疫情期间增长了200%-300%。
其实像外卖、速冻、泡面和眼下潮头上的各种自热锅,本质都是“懒人经济”。同样是方便食品,泡个面还得烧水,速冻食品还得开火加热,而自热锅多方便,比起方便面自热锅在选择上好歹有肉有菜有饭有面,选择上略胜一筹。
02全网哪款自热火锅卖得最好?
我们使用Python获取了淘宝网自热食品相关的商品销售数据,共有4403条数据。
自热食品品类月销量
首先我们看看自热食品都有哪些类别。我们可以看到,卖得最好的是各种自热火锅,以超过190多万的月销量一骑绝尘。排在第二位的是自热米饭,销售量超过64万。排在后面的还有自热方便面、自热粉丝、自热烧烤等等。
哪款自热食品卖的最好?
那么都是哪些自热食品卖得最好呢?下面看到产品月销量排名top10。排在前三位的月销量都超过了12万,分别是椒吱自热小火锅、阿宽自热米饭和辣味客重庆自热小火锅。
自热食品店铺销量排行
都是哪些店铺占据着自热食品销量的前列呢?
通过分析我们发现,卖的做多的是天猫超市。那么具体的店铺方面,前三位分别是莫小仙、自嗨锅以及川蜀老味道。辣味客、白家陈记等店紧随其后。
自热食品标题词云
整理自热食物的标题后我们发现:“即时”、“速食”、“自热”、“懒人”等词都常常出现,果然是懒人经济,就是讲究个方便和快速,让你撕开包装,不需过多的操作就能吃上。类别上主要集中在“火锅”、“米饭”、“麻辣烫”、“面类”等。
自热食品店铺地区分布
这些自热食品的店铺都分布在哪些地区呢?从销量靠前的商品我们也可以猜到,这方面四川绝对是霸主,全网的自热食品店铺数量排名中,四川以1140家店铺称霸。
其次广东和上海分别以1007和1002家店位居二三。
自热食品都卖多少钱?
再看到自热食品的价格,可以看到30元以下的超过了半数,占比62.78%。这也是大众普遍能接受的价格,价格再高的话还不如点份外卖了。
03教你用Python分析
全网自热食品数据
我们使用Python获取了淘宝网自热食品相关的商品销售数据,进行了以下数据分析。
1数据读入
首先导入所需包:
# 导入包 import numpy as np import pandas as pd import time import jieba import os from pyecharts.charts import Bar, Line, Pie, Map, Page from pyecharts import options as opts import stylecloud from IPython.display import Image
使用循环读入数据集,查看一下数据集大小,可以看到一共有4403条数据。
file_list = os.listdir('../data/')
df_all = pd.DataFrame()
# 循环读入
for file in file_list:
df_one = pd.read_excel(f'../data/{file}')
df_all = df_all.append(df_one, ignore_index=True)
print(df_all.shape)
(13984, 6)
预览一下数据。
df_all.head()
2数据预处理
我们对数据集进行以下处理,以便我们后续的可视化分析工作,经过处理之后的数据共8418条。
# 去除重复值
df_all.drop_duplicates(inplace=True)
# 删除购买人数为空的记录
df_all = df_all[df_all['purchase_num'].str.contains('人付款')]
# 重置索引
df_all = df_all.reset_index(drop=True)
df_all.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 8418 entries, 0 to 8417 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 category 8418 non-null object 1 goods_name 8418 non-null object 2 shop_name 8418 non-null object 3 price 8418 non-null float64 4 purchase_num 8418 non-null object 5 location 8418 non-null object dtypes: float64(1), object(5) memory usage: 394.7+ KB
# 提取数值
df_all['num'] = df_all['purchase_num'].str.extract('(\d+)').astype('int')
# 提取单位
df_all['unit'] = df_all.purchase_num.str.extract(r'(万)')
df_all['unit'] = df_all.unit.replace('万', 10000).replace(np.nan, 1)
# 重新计算销量
df_all['true_purchase'] = df_all['num'] * df_all['unit']
# 删除列
df_all = df_all.drop(['purchase_num', 'num', 'unit'], axis=1)
# 计算销售额
df_all['sales_volume'] = df_all['price'] * df_all['true_purchase']
# location
df_all['province'] = df_all['location'].str.split(' ').str[0]
df_all.head()
此部分部分主要对以下的维度数据进行汇总和可视化分析,以下展示关键部分:
cat_num = df_all.groupby('category')['true_purchase'].sum()
cat_num = cat_num.sort_values(ascending=False)
# 条形图
bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar1.add_xaxis(cat_num.index.tolist())
bar1.add_yaxis('', cat_num.values.tolist())
bar1.set_global_opts(title_opts=opts.TitleOpts(title='自热食品细分品类月销量表现'),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=0)),
visualmap_opts=opts.VisualMapOpts(max_=1960179.0)
)
bar1.render()
shop_top10 = df_all.groupby('shop_name')['true_purchase'].sum().sort_values(ascending=False).head(10)
shop_top10.sort_values(inplace=True)
# 条形图
bar2 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px'))
bar2.add_xaxis(shop_top10.index.tolist())
bar2.add_yaxis('', shop_top10.values.tolist())
bar2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品各店铺月销量排行Top10'),
)
bar2.set_series_opts(label_opts=opts.LabelOpts(position='right'))
bar2.set_colors(['#50A3BA'])
bar2.reversal_axis()
bar2.render()
province_top10 = df_all.province.value_counts()[:10] # 条形图 bar3 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar3.add_xaxis(province_top10.index.tolist()) bar3.add_yaxis('', province_top10.values.tolist()) bar3.set_global_opts(title_opts=opts.TitleOpts(title='各省份自热食品店铺数量排行Top10'), visualmap_opts=opts.VisualMapOpts(max_=1140) ) bar3.render()
province_num = df_all.groupby('province')['true_purchase'].sum().sort_values(ascending=False)
# 地图
map1 = Map(init_opts=opts.InitOpts(width='1350px', height='750px'))
map1.add("", [list(z) for z in zip(province_num.index.tolist(), province_num.values.tolist())],
maptype='china'
)
map1.set_global_opts(title_opts=opts.TitleOpts(title='全国自热食品店铺月销量分布'),
visualmap_opts=opts.VisualMapOpts(max_=500000),
)
map1.render()
# 分箱
bins = [0,30,50,100,150,200,500,1000,9999]
labels = ['0-30元', '30~50元', '50-100元', '100-150元', '150-200元', '200-500元', '500-1000元', '1000-8800']
df_all['price_cut'] = pd.cut(df_all.price, bins=bins, labels=labels, include_lowest=True)
price_num = df_all['price_cut'].value_counts()
# 数据对
data_pair2 = [list(z) for z in zip(price_num.index.tolist(), price_num.values.tolist())]
# 绘制饼图
pie2 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie2.add('', data_pair2, radius=['35%', '60%'])
pie2.set_global_opts(title_opts=opts.TitleOpts(title='自热食品都卖多少钱?'),
legend_opts=opts.LegendOpts(orient='vertical', pos_top='15%', pos_left='2%'))
pie2.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:\n{d}%"))
pie2.set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF'])
pie2.render()
结语:
最后在说道自热食品,虽然说宅家时,打开包装稍等一会儿就能吃上热腾腾的小火锅或米饭,真的是太方便了。但是同时,关于自热食品安全隐患的消息也频出,在食物的种类和口感上更是比不上自己做的或外面吃的新鲜食材了。对自热食品你是怎么看的呢?欢迎留言告诉我们哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16