京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在实际的数据清洗过程中,我们经常会遇到数据内容丢失的情况,这些丢失的数据内容就是缺失值。缺失值的产生的原因多种多样,主要分为机械原因和人为原因。
机械原因,也就是由于例如,数据存储失败,存储器损坏,机械故障等原因,某段时间数据未能收集,或保存的失败,从而造成的数据缺失。人为原因,主要是由于人的主观失误、历史局限或有意隐瞒造成的数据缺失。比如,在市场调查中被访人拒绝透露相关问题的答案,或者回答的问题是无效的,数据录入人员失误漏录了数据。不管是哪种原因造成的,我们都必须对缺失数据进行妥善处理,才能更好的保证最终数据分析结果的正确性和准确性。下面小编就介绍几种缺失值处理常用的方法,希望对大家有所帮助。
1.删除
如果缺失值的个数只占整体很小一部分的情况下,可以删除缺失值。
这种方法是将存在缺失值的数据条目(包括:对象,元组,记录)进行删除。简单便捷,在对象有多个属性缺失值、被删除的含缺失值的对象的数据量只占信息表中的数据量一小部分的情况下是非常有效的。
python代码
import numpy as np import pandas as pd data = pd.read_csv('data.csv',encoding='GBK') # 将空值形式的缺失值转换成可识别的类型 data = data.replace(' ', np.NaN) print(data.columns)#['id', 'label', 'a', 'b', 'c', 'd'] #将每列中缺失值的个数统计出来 null_all = data.isnull().sum() #id 0 #label 0 #a 7 #b 3 #c 3 #d 8 #查看a列有缺失值的数据 a_null = data[pd.isnull(data['a'])] #a列缺失占比 a_ratio = len(data[pd.isnull(data['a'])])/len(data) #0.0007 #丢弃缺失值,将存在缺失值的行丢失 new_drop = data.dropna(axis=0) print(new_drop.shape)#(9981,6) #丢弃某几列有缺失值的行 new_drop2 = data.dropna(axis=0, subset=['a','b']) print(new_drop2.shape)#(9990,6)
2.均值、众数、中位数填充
均值填充:对每一列的缺失值,填充当列的均值。
中位数填充:对每一列的缺失值,填充当列的中位数。
众数填充:对每一列的缺失值,填充当列的众数。
python代码
data['a'] = data['a'].fillna(data['a'].means()) #中位数填充 data['a'] = data['a'].fillna(data['a'].median()) #众数填充 data['a'] = data['a'].fillna(stats.mode(data['a'])[0][0]) #用前一个数据进行填充 data['a'] = data['a'].fillna(method='pad') #用后一个数据进行填充 data['a'] = data['a'].fillna(method='bfill')
3.填充上下条的数据
对每一条数据的缺失值,填充其上下条数据的值。
python代码
train_data.fillna(method='pad', inplace=True) # 填充前一条数据的值,但是前一条也不一定有值 train_data.fillna(0, inplace=True) train_data.fillna(method='bfill', inplace=True) # 填充后一条数据的值,但是后一条也不一定有值 train_data.fillna(0, inplace=True)
4.填充插值得到的数据
interpolate()插值法,计算的是缺失值前一个值和后一个值的平均数。
python代码
data['a'] = data['a'].interpolate()
5.KNN填充
填充近邻的数据,先利用KNN计算临近的k个数据,然后填充他们的均值。
from fancyimpute import KNN fill_knn = KNN(k=3).fit_transform(data) data = pd.DataFrame(fill_knn) print(data.head()) #out 0 1 2 3 4 5 0 111.0 0.0 2.0 360.0 4.000000 1.0 1 112.0 1.0 9.0 1080.0 3.000000 1.0 2 113.0 1.0 9.0 1080.0 2.000000 1.0 3 114.0 0.0 1.0 360.0 *3.862873 *1.0 4 115.0 0.0 1.0 270.0 5.000000 1.0
6.随机森林填充
from sklearn.ensemble import RandomForestRegressor #提取已有的数据特征 process_df = data.ix[:, [1, 2, 3, 4, 5]] # 分成已知该特征和未知该特征两部分 known = process_df[process_df.c.notnull()].as_matrix() uknown = process_df[process_df.c.isnull()].as_matrix() # X为特征属性值 X = known[:, 1:3] # print(X[0:10]) # Y为结果标签 y = known[:, 0] print(y) # 训练模型 rf = RandomForestRegressor(random_state=0, n_estimators=200, max_depth=3, n_jobs=-1) rf.fit(X, y) # 预测缺失值 predicted = rf.predict(uknown[:, 1:3]) print(predicted) #将预测值填补原缺失值 data.loc[(data.c.isnull()), 'c'] = predicted print(data[0:10])以上就是小编给大家分享的python实现缺失值处理的几种方法,希望对大家缺失值的处理有所帮助。如果,大家在缺失值处理方面还有哪些好的方法,欢迎随时和小编交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27