
在文本分类,垃圾邮件过滤的场景中,我们经常会用到的是朴素贝叶斯算法,今天小编就具体给大家介绍一下朴素贝叶斯算法
一、朴素贝叶斯算法简介
1.朴素贝叶斯算法概念
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。
2.朴素贝叶斯算法优缺点
优点:
(1)朴素贝叶斯模型发源于古典数学理论,分类效率比较稳定。
(2)对小规模的数据表现很好,能够用于多分类任务的处理,适合增量式训练,尤其是在数据量超出内存的情况下,能够一批批的去增量训练。
(3)算法简单,对缺失数据不太敏感。
缺点:
(1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间是相互独立的,而这个假设在实际应用中往往并不成立的。虽然在属性相关性较小时,朴素贝叶斯性能良好。但是,在属性个数比较多或者属性之间相关性较大时,分类效果并不好。
(2)需要知道先验概率,并且先验概率在很多时候多是取决于假设,假设的模型可以有多种,从而导致在某些时候会由于假设的先验模型而使得预测效果不佳。
(3)因为是通过先验和数据来决定后验的概率来决定分类的,所以分类决策存在一定的错误率。
(4)对输入数据的表达形式很敏感。
二、贝叶斯定理
既然,朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。那么接下来我们就来了解一下贝叶斯定理。
贝叶斯算法是英国数学家贝叶斯(约1701-1761)Thomas Bayes,生前提出为解决“逆概”问题而提出的。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在 B 发生的条件下 A 发生的概率”。
联合概率表示两个事件共同发生(数学概念上的交集)的概率。A 与 B 的联合概率表示为
推导:
从条件概率的定义推导出贝叶斯定理。
根据条件概率的定义,在事件 B 发生的条件下事件 A 发生的概率为:
同样道理,在事件 A 发生的条件下事件 B 发生的概率为:
结合这两个方程式,能够得到:
这个引理有时称作概率乘法规则。上式两边同除以 P(A),若P(A)是非零的,就能得到贝叶斯定理:
# 文本分类器 import numpy as np # 数据样本 def loadDataSet(): # dataset = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], # # ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], # # ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'hime'], # # ['stop', 'posting', 'stupid', 'worthless', 'garbage'], # # ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], # # ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] dataset = [['玩', '游', '戏', '吧'], ['玩', 'lol', '吧'], ['我', '要', '学', '习'], ['学', '习', '使', '我', '快', '了'], ['学', '习', '万', '岁'], ['我', '要', '玩', '耍']] label = [1, 1, 0, 0, 0, 1] return dataset, label # 获取文档中出现的不重复词表 def createVocabList(dataset): vocaset = set([]) # 用集合结构得到不重复词表 for document in dataset: vocaset = vocaset | set(document) # 两个集合的并集 return list(vocaset) def setword(listvocaset, inputSet): newVocaset = [0] * len(listvocaset) for data in inputSet: if data in listvocaset: newVocaset[listvocaset.index(data)] = 1 # 如果文档中的单词在列表中,则列表对应索引元素变为1 return newVocaset def train(listnewVocaset, label): label = np.array(label) numDocument = len(listnewVocaset) # 样本总数 numWord = len(listnewVocaset[0]) # 词表的大小 pInsult = np.sum(label) / float(numDocument) p0num = np.ones(numWord) # 非侮辱词汇 p1num = np.ones(numWord) # 侮辱词汇 p0Denom = 2.0 # 拉普拉斯平滑 p1Denom = 2.0 for i in range(numDocument): if label[i] == 1: p1num += listnewVocaset[i] p1Denom += 1 else: p0num += listnewVocaset[i] p0Denom += 1 # 取对数是为了防止因为小数连乘而造成向下溢出 p0 = np.log(p0num / p0Denom) # 属于非侮辱性文档的概率 p1 = np.log(p1num / p1Denom) # 属于侮辱性文档的概率 return p0, p1, pInsult # 分类函数 def classiyyNB(Inputdata, p0, p1, pInsult): # 因为取对数,因此连乘操作就变成了连续相加 p0vec = np.sum(Inputdata * p0) + np.log(pInsult) p1vec = np.sum(Inputdata * p1) + np.log(1.0 - pInsult) if p0vec > p1vec: return 0 else: return 1 def testingNB(): dataset, label = loadDataSet() voast = createVocabList(dataset) listnewVocaset = [] for listvocaset in dataset: listnewVocaset.append(setword(voast, listvocaset)) p0, p1, pInsult = train(listnewVocaset, label) Inputdata = ['玩', '一', '玩'] Inputdata = np.array(Inputdata) Inputdata = setword(voast, Inputdata) print("这句话对应的分类是:") print(classiyyNB(Inputdata, p0, p1, pInsult)) testingNB()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08