京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和‘真’模型一样,所以最终网络模型会因为复杂度太高而产生过拟合。今天小编就给大家整理了过拟合产生的原因及一些相应的解决方法,希望对大家机器学习中解决过拟合问题有所帮助。
一、什么是过拟合
过拟合定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。
过拟合(overfiting / high variance)表现为:模型在训练集上表现很好,但是在测试集上表现较差。也就是说模型的泛化能力弱。
简单理解过拟合,就是模型对训练数据的信息提取过多,不仅学习到了数据背后的规律,连数据噪声都当做规律学习了。
对比欠拟合理解起来会更容易:
二、过拟合产生原因
三、过拟合处理办法
1、重新清洗数据,过拟合出现也有可能是数据不纯,这种情况下我们需要重新清洗数据。
2、数据增强,也就是获取和使用更多的数据集。给与模型足够多的数据集,让它在尽可能多的数据上进行“观察”和拟合,从而进行不断修正。但是需要注意的是,我们是不可能收集无限多的数据集的,所以通常的方法,就是对已有的数据进行,添加大量的“噪音”,或者对图像进行锐化、对旋转、明暗度进行调整等。
3、采用正则化方法。加入正则化项就是在原来目标函数的基础上加入了约束。常用的正则化项有L1.L2.当目标函数的等高线和L1.L2正则化损失函数第一次相交时,得到最优解。
L1正则化项约束后的解空间为多边形,这些多边形的角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。
L2正则化项约束后的解空间为圆形,图像上的棱角圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,参数不断趋向于0.最后得到的就是很小的参数。
4、采用dropout方法。

运用了dropout方法,就相当于训练了非常多的,仅仅只有部分隐层单元的神经网络,每一个这种半数网络,都能够给出一个分类结果,这些结果中,有正确的,也有错误的。随着训练的进行,大多数半数网络都能给出正确的分类结果。这样一来,那些少数的错误分类结果对于最终结果就不会哦造成大的影响。而且dropout通过减少神经元之间复杂的共适应关系,从而也提高了模型的泛化能力。
5、提前结束训练
也就是early stopping,在模型迭代训练时,对训练精度(损失)和验证精度(损失)进行记录,如果模型训练的效果不能够再提高,例如训练误差一直降低,但是验证误差却不再降低甚至上升的情况,我们可以采用结束模型训练的方法。
6、集成学习
集成学习算法也可以有效的减轻过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。Boosting不仅能够减小偏差,还能减小方差。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12