在机器学习中,相对于欠拟合,过拟合出现的频次更高。这是因为,假设某一数据集其对应的模型为‘真’模型,我们通常是采用提高模型的复杂度的方法,来避免欠拟合现象的产生,但与此同时,我们又很难把网络设计成和‘真’模型一样,所以最终网络模型会因为复杂度太高而产生过拟合。今天小编就给大家整理了过拟合产生的原因及一些相应的解决方法,希望对大家机器学习中解决过拟合问题有所帮助。
一、什么是过拟合
过拟合定义:给定一个假设空间H,一个假设h属于H,如果存在其他的假设h’属于H,使得在训练样例上h的错误率比h’小,但在整个实例分布上h’比h的错误率小,那么就说假设h过度拟合训练数据。
过拟合(overfiting / high variance)表现为:模型在训练集上表现很好,但是在测试集上表现较差。也就是说模型的泛化能力弱。
简单理解过拟合,就是模型对训练数据的信息提取过多,不仅学习到了数据背后的规律,连数据噪声都当做规律学习了。
对比欠拟合理解起来会更容易:
二、过拟合产生原因
三、过拟合处理办法
1、重新清洗数据,过拟合出现也有可能是数据不纯,这种情况下我们需要重新清洗数据。
2、数据增强,也就是获取和使用更多的数据集。给与模型足够多的数据集,让它在尽可能多的数据上进行“观察”和拟合,从而进行不断修正。但是需要注意的是,我们是不可能收集无限多的数据集的,所以通常的方法,就是对已有的数据进行,添加大量的“噪音”,或者对图像进行锐化、对旋转、明暗度进行调整等。
3、采用正则化方法。加入正则化项就是在原来目标函数的基础上加入了约束。常用的正则化项有L1.L2.当目标函数的等高线和L1.L2正则化损失函数第一次相交时,得到最优解。
L1正则化项约束后的解空间为多边形,这些多边形的角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为0 ,产生稀疏权重矩阵,进而防止过拟合。
L2正则化项约束后的解空间为圆形,图像上的棱角圆滑了很多。一般最优值不会在坐标轴上出现。在最小化正则项时,参数不断趋向于0.最后得到的就是很小的参数。
4、采用dropout方法。
运用了dropout方法,就相当于训练了非常多的,仅仅只有部分隐层单元的神经网络,每一个这种半数网络,都能够给出一个分类结果,这些结果中,有正确的,也有错误的。随着训练的进行,大多数半数网络都能给出正确的分类结果。这样一来,那些少数的错误分类结果对于最终结果就不会哦造成大的影响。而且dropout通过减少神经元之间复杂的共适应关系,从而也提高了模型的泛化能力。
5、提前结束训练
也就是early stopping,在模型迭代训练时,对训练精度(损失)和验证精度(损失)进行记录,如果模型训练的效果不能够再提高,例如训练误差一直降低,但是验证误差却不再降低甚至上升的情况,我们可以采用结束模型训练的方法。
6、集成学习
集成学习算法也可以有效的减轻过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。Boosting不仅能够减小偏差,还能减小方差。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28