京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们都知道python是一款功能强大的数据分析工具,而且使用起来相对简单,被广泛应用于数据分析,web开发,人工智能等很多领域。语音识别,也叫作自动语音识别,其是以计算机自动将人类的语音内容转换为相应文字为目标。语音识别的应用范围,包括、简单的听写数据录入,语音拨号、语音导航、室内设备控制、语音文档检索等等。当语言识别遇上python,其实现将会变得更简单,快捷。今天小编与大家分享的就是python语音识别的一些基础知识,希望对大家有所帮助。
一、python语音识别原理
语音识别的首要任务是语音,通常通过麦克风,语音就能够从物理声音转换为电信号,之后再被转换为数据。语音一旦被数字化,就能够适用若干模型,最终转换为文本。
目前现代大多数语音识别系统,都是基于隐马尔可夫模型(HMM)。这一模型的工作原理为:语音信号在极短的时间尺度上,例如10 毫秒,能够被近似为静止过程,也就是一个统计特性不随时间变化的过程。而python语音识别技术, 一些服务能够通过 API 在线使用,并且大部分都提供了 Python SDK。
二、选择python 语音识别包
apiai
google-cloud-speech
pocketsphinx
SpeechRcognition
watson-developer-cloud
wit
其中, SpeechRcognition为最便捷的一种。
因为语音识别首先需要输入音频,而 SpeechRecognition 检索音频输入是极为简便快捷的,我们并不需要构建访问麦克风,也不需要从头开始处理音频文件的脚,SpeechRecognition 仅仅几分钟就能自动完成检索并运行。
SpeechRecognition 库能够满足几种主流语音 API ,灵活性非常高。例如: Google Web Speech API 支持硬编码到 SpeechRecognition 库中的默认 API 密钥,不需要注册就能直接使用。因此,SpeechRecognition 由于具有灵活性和易用性的优点,成为编写 Python 程序的最佳选择。
三、python 语音识别
import numpy as np import scipy.io.wavfile as wf import python_speech_features as sf import hmmlearn.hmm as hl # 提取样本信息 train_x,train_y = [],[] mfccs = np.array([]) for sound_files in files_list: for sound_file in sound_files: sample_rate,sigs = wf.read(sound_file) mfcc = sf.mfcc(sigs,sample_rate) # 将mfcc矩阵添加到mfccs中 if len(mfccs) == 0: mfccs == mfcc else: mfccs = np.append(mfccs,mfcc) # 将mfccs矩阵列表添加到训练集中 train_x.append(mfccs) # 最终的train_x len(sound_files)个特征的矩阵 # train_y存的是特征标签,比如:apple,banana,pear # 构建并训练隐马模型 models = {} for mfccs,label in zip(train_x,train_y): model = hl.GaussianHMM( n_components = 4, covariance_type = 'diag', n_iter = 1000 ) models[label] = model.fit(mfccs) # 同样方法获取测试集数据 # 测试 pred_y = [] for mfccs in test_x: # 验证每个模型对当前mfcc的匹配度得分 best_score, best_label = None, None for label, model in models.items(): score = model.score(mfccs) if (best_score is None) or (best_score < score): best_score = score best_label = label pred_y.append(best_label) print(test_y) print(pred_y)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04