京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信接触过数据分析的人,尤其是商业分析方面,一定有听说过漏斗模型。漏斗模型,顾名思义,也就是像漏斗一样的模型,在互联网或者是电商行业经常会用到的一种营销模型。今天,小编就为大家整理了漏斗模型的一些基础知识,希望对大家学习和使用商业分析模型有所帮助。
一、漏斗模型定义
营销漏斗模型指的是营销过程中,将非潜在客户逐步变为客户的转化量化模型。营销漏斗模型的价值在于量化了营销过程各个环节的效率,帮助找到薄弱环节。
简单解释一下,就是:营销的环节,指的是从最初获取用户一直最终转化成购买,这一整个流程中的每一个子环节,相邻环节的转化率,也就是指用数据指标来量化每一个步骤的表现。因此整个漏斗模型,就是首先将整个流程拆分成一个个步骤,然后通过转化率对每一个步骤的表现进行衡量,最后再通过那些异常的数据指标,找到有问题的环节,进而解决问题,优化这一步骤,最终达到提升整体购买转化率的目的。
二、漏斗模型典型案例
以电商行业为例,漏斗模型通常就是对用户在网页浏览中一些关键节点的转化程度的描述,例如一般从浏览到真正购买产品或服务,通常情况下需要经历以下几个步骤:浏览商品、加入购物车、购物车结算、核对订单、提交订单,完成在线支付,按照一几个步骤走下来,潜在用户人数会越来越少,这个过程就是漏斗模型,以此来看,漏斗模型主要的分析目就是:针对营销过程中的每一个关键环节进行分析,然后纠正那些转换率低的环节。
互联网运营过程中,经常用到的AARRR模型也是漏斗模型的典型案例。AARRR模型指的是:Acquisition、Activation、Retention、Revenue、Referral,也就是经常说的:用户获取、用户激活、用户留存、用户收益和用户传播。通过AARRR模型图,我们可以明显的分析出:整个用户的生命周期是呈现逐渐递减趋势的。通过对整个用户生命周期各环节的量化和拆解,我们可以对数据进行横向和纵向的对比,从而发现对应的问题,最终实现优化迭代。
三、漏斗模型绘制
python实现
# 导入相关的包 import numpy as np import matplotlib.pyplot as plt from matplotlib.offsetbox import (TextArea, AnnotationBbox) plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文乱码 N = 3 # N个环节 HEIGHT = 0.55 # 条形图的每个方框的高度 x1 = np.array([100, 50, 30]) # 各环节的数据 x2 = np.array((x1.max() - x1) / 2) # 占位数据 x3 = [] # 画图时的条形图的数据 for i, j in zip(x1,x2): x3.append(i+j) x3 = np.array(x3) y = np.arange(N)[::-1] # 倒转y轴。 labels=['注册', '留存', '付费'] # 各个环节的标签。 # 画板和画纸 fig = plt.figure(figsize=(8, 5)) ax = fig.add_subplot(111) # 绘图 ax.barh(y, x3, HEIGHT, tick_label=labels, color='blue', alpha=0.85) # 主条形图 ax.barh(y, x2, HEIGHT, color='white', alpha=1) # 覆盖主条形图的辅助数据 # 转化率 rate = [] for i in range(len(x1)): if i < len(x1)-1: rate.append('%2.2f%%' % ((x1[i+1]/x1[i]) * 100)) # 转化率的横坐标。 y_rate = [(x1.max()/2, i-1) for i in range(len(rate), 0, -1)] # 转化率 # 标注转化率 for a, b in zip(rate, y_rate): offsetbox = TextArea(a, minimumdescent=False) ab = AnnotationBbox(offsetbox, b, xybox=(0, 40), boxcoords="offset points", arrowprops=dict(arrowstyle="->")) ax.add_artist(ab) # 设置x轴y轴标签 ax.set_xticks([0, 100]) ax.set_yticks(y) # 显示图形 plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11