京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家都知道,数据分析的目的是驱动业务的增长。销售漏斗是我们数据分析中最常用到的商业分析模型之一,对于掌握销售的具体进展情况,促进销售转化很有帮助。今天小编就跟大家分享一些关于销售漏斗的知识,希望能帮助大家及时发现销售中的问题,实现业务的增长。
一、销售漏斗概念
销售漏斗,又称为销售管道,即Sales Pipeline,是一个形象的概念,是对销售过程控制的重要分析工具。销售漏斗可以通过对销售阶段的分析,来掌握销售的进展情况,是一种量化的,对销售过程进行管理的方法。销售漏斗适合对销售流程比较规范、周期比较长、参与的人员比较多的,复杂销售过程的管理。
二、关于销售漏斗形状的解释
漏斗的顶部是有购买需求的潜在用户,漏斗的上部是将本企业产品(服务)列入候选清单的潜在用户,漏斗的中部是将本企业产品(服务)列入优选清单的潜在用户,漏斗的下部是基本上已经确定购买本企业的产品(服务),只是有些手续还没有落实的潜在用户,漏斗的底部就是我们所期望的成交的用户。
销售漏斗的顶部为:有购买需求的潜在用户;上部为将本企业产品或者服务,列入购买的候选清单的潜在用户;中部为将本企业产品或者服务,列入优选清单的潜在用户,最常见的,例如:两个品牌或商品中选择一个;下部为基本上已经确定购买本企业的产品或者服务的用户,目前有些手续还没有真正落实的潜在用户;漏斗最底部,就是我们所期望成交的用户。从潜在用户到真正签约,每推进一步,用户名单就会相应减少,因此形成倒三角形,也就是这样的漏斗形状。通常企业,为了更加有效地管理自己的销售人员、系统集成商、以及增值服务商,需要按照上述定义对所有潜在用户进行分类。对于处在销售漏斗各个层次的定义,根据销售内容的不同,是可以有所不同的。在实际的销售过程中,每一个项目,并不是必须要经过所有的阶段,有些进展顺利的项目,很可能是跳跃式发展的。
三、销售漏斗的功能
1.过滤:销售漏斗使用其不同不同的漏网密度,对那些冗余,更甚至是混淆视听的错误信息,进行过滤,从而使销售管理人员得到,想要的重要的“信息”,并以此帮助企业来避免时间成本和机会成本的损失。
2.准确预测:销售管理人员如何核算当前销售额度,并合理、准确的预测下一月度/季度/年度数据也是一个难题。销售漏斗既能对每一层次进行定位,也能够按照销售进度,对每一层估算一个成功度可能性的值。我们可以在下一阶段的数据预测中,参照这个估值。
3.形成共通的语言:销售漏斗,形成了一种销售人员之间进行沟通的共通的语言。通过销售漏斗图,我们能够很明确的了解,销售的进展程度,以及下一步的计划。
四、销售漏斗在实际业务中的作用
1、能够及时分析各业务地区,或者销售员个人销售的完成情况,掌握销售的线索情况,以及目前的进程,并能对年度或在未来某区间销售完成情况进行预测;
2、能够及时掌握各销售人员的客户资源和销售进程,更好地对销售人员和销售资料进行管理,减少因销售人员流失而导致的客户流失的损失;
3、便于推行对销售人员的多维度考核,不仅可以考核销售人员的销售额,还能够考核销售人员对销售机会的捕捉能力、对新客户的推进能力,以及成单速度和成单率等;
4、便于团队协作,使公司可以预先计划资源和协调资源;
5、便于发现行业和区域的销售特点和销售形势,制定出准确的销售计划,合理分配销售定额。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20