
CDA数据分析师 出品
作者:Mika
数据:真达
后期:泽龙
【导读】今天我们用数据来聊一聊新一线城市。
Show me data,用数据说话
今天我们聊一聊 新一线城市
提到一线城市,大家马上会想到北上广深这四个超级大都市。除此之外,近年来新一线城市这个概念也越来越被大众所熟知。
2013年,财经媒体第一财经提出了提出“新一线城市”的概念,以商业资源集聚度、城市枢纽性、城市人活跃度、生活方式多样性以及未来可塑性作为评判的五大指标,针对全国几百个地级市进行了全新的排名,将未来最有潜力晋升传统一线城市的15个城市称为“新一线城市”。
作为距离一线城市最近的梯队,新一线城市的榜单可以说含金量十足,每年的评选都备受关注。
(来自维基百科)
2020年15座新一线城市包括成都、重庆、杭州、武汉、西安、天津、苏州、南京、郑州、长沙、东莞、沈阳、青岛、合肥、佛山。
(来自21世纪报道)
其中在人口增量方面:西安由于大幅降低落户门槛,且将西咸新区人口纳入人口总数后,在近3年以新增128.87万常住人口,排名15个新一线城市常住人口增量第一位。常住人口增量连年提升的杭州,则以近3年117.2万的增量,排名新一线城市第二位。
和它们相比,天津近3年以来出现常住人口-0.29万的增长,沈阳3年增长了3万,势头微弱。
那么这15座新一线城市
近20年来的GDP变化趋势如何?
人口竞争力如何排座次?
房价又是怎样的?
今天我们就来用数据全面解读这15座城市。
这次我们使用Python的动态可视化库plotly,对这15座城市从2000年到2019年这20年的GDP、人口以及房价数据进行了可视化。下面就让我们来一起看看吧!
我们的数据从以下四个维度展开:
01 数据获取
我们使用Python的可视化库Plotly对15座新一线城市的人口/GDP/房价数据进行动态可视化展示。plotly是一个基于javascript的绘图库,绘图种类丰富,效果美观,使用Plotly可以画出很多媲美Tableau的高质量图。
如果你没有安装plotly,可以使用以下代码进行pip安装:
pip install plotly -i https://pypi.tuna.tsinghua.edu.cn/simple
首先导入我们需要使用的包,其中pandas用于数据整理,plotly用于数据可视化。
# 导入包 import pandas as pd import plotly as py import plotly.graph_objs as go import plotly.express as px from plotly import tools
使用pandas读入并合并数据集,我们选取的数据来自于国家统计局网站,该数据包含了15座新一线城市自2000年~2019年20年期间的GDP和人口数据,这是一份带有时间序列的面板数据,适合进行动态可视化绘图使用。
# 读入数据 df_gdp = pd.read_excel('../data/新一线城市人口和GDP.xlsx', sheet_name=0) df_pop = pd.read_excel('../data/新一线城市人口和GDP.xlsx', sheet_name=1) # 合并数据 df_all = pd.merge(left=df_gdp, right=df_pop, on=['城市', '年份']) df_all = df_all.sort_values(['城市','年份']) df_all.head()
02 数据可视化
Plotly有两个很常用的绘图模块,分别是graph_objs和express,此次我们主要使用express进行动态可视化图形的绘制,使用它可以轻松绘制如散点图、条形图、漏斗图、桑基图等图形。
使用官网:
https://plotly.com/python/plotly-express/
绘图的步骤也非常简单:
接下来我们演示使用plotly.express绘制动态条形图和散点图。
首先绘制一个动态条形图,用于展示15座城市随时间走势的GDP变化趋势,调用bar的方法即可。
绘图主要参数解释:
# 条形图 fig2 = px.bar(df_all, x='城市', y='GDP', color='城市', text='GDP', title='新一线城市近20年GDP变化趋势', range_y=[300, 25000], animation_frame='年份', ) fig2.update_layout(yaxis_title='GDP(亿元)') # 更新布局配置 py.offline.plot(fig2, filename='2000-2019年GDP变化趋势.html')
然后绘制一个动态散点图,用于展示15座城市随时间走势的GDP和人口变化趋势,调用scatter的方法即可。绘图步骤和上述类似。
# 散点图 fig3 = px.scatter(df_all, x='GDP', y='人口', animation_frame='年份', animation_group='城市', size='人口', color='城市', hover_name='城市', size_max=50, text='城市', range_x=[300, 25000], range_y=[150, 4000], title='新一线城市近20年GDP和人口变化趋势', ) fig3.update_layout(xaxis_title='GDP(亿元)', yaxis_title='人口(万人)') py.offline.plot(fig3, filename='2000-2019年GDP和人口变化趋势.html')
03 可视化效果
想要获取具体的数据代码和可视化效果图,可以给小编留言或者私信哦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04