京公网安备 11010802034615号
经营许可证编号:京B2-20210330
pandas 是为了解决数据分析任务而创建的Python 库,源于NumPy ,经常被用于对数据挖掘前期数据的处理工作。pandas提供了大量的处理数据的函数和方法,并且还纳入了大量库与很多标准的数据模型,能让我们更加高效地处理大型数据集。但是大家在使用pandas的过程中,经常会遇到这样那样的问题,下面,小编就整理了一些大家需要掌握的pandas 的基础知识,希望对大家有所帮助。
以下文章来源于: 数据分析1480
作者:刘顺祥
背景介绍
经常会有一些朋友问我类似的问题,“哎呀,这个数据该怎么处理啊,我希望结果是这样的,麻烦刘老师帮我看看。”、“刘老师,怎么把一列数据拆分出来,并取出最后一个拆分结果呀?”、“刘老师,怎么将Json数据读入到Python中呢?”。在我看来,这些问题都可以借助于Pandas模块完成,因为Pandas属于专门做数据预处理的数据科学包。下面来介绍一下我认为Pandas模块中需要掌握的功能和函数。
数据读写
案例演示
# 读入MySQL数据库数据 # 导入第三方模块 import pymysql # 连接MySQL数据库 conn = pymysql.connect(host='localhost', user='root', password='test', database='test', port=3306, charset='utf8') # 读取数据 user = pd.read_sql('select * from topy', conn) # 关闭连接 conn.close() # 数据输出 User
数据初印象
案例演示
# 数据读取
sec_cars = pd.read_table(r'C:\Users\Administrator\Desktop\sec_cars.csv', sep = ',')
# 预览数据的前五行
sec_cars.head()
# 查看数据的行列数
print('数据集的行列数:\n',sec_cars.shape)
# 查看数据集每个变量的数据类型
print('各变量的数据类型:\n',sec_cars.dtypes)
# 数据的描述性统计
sec_cars.describe()
案例演示
# 数据读入
df = pd.read_excel(r'C:\Users\Administrator\Desktop\data_test05.xlsx')
# 缺失观测的检测
print('数据集中是否存在缺失值:\n',any(df.isnull()))
# 删除法之记录删除
df.dropna()
# 删除法之变量删除
df.drop('age', axis = 1)
# 替换法之前向替换
df.fillna(method = 'ffill')
# 替换法之后向替换
df.fillna(method = 'bfill')
# 替换法之常数替换
df.fillna(value = 0)
# 替换法之统计值替换
df.fillna(value = {'gender':df.gender.mode()[0], 'age':df.age.mean(),
'income':df.income.median()})
类型转换与元素及运算
案例演示
# 数据读入
df = pd.read_excel(r'C:\Users\Administrator\Desktop\data_test03.xlsx')
# 将birthday变量转换为日期型
df.birthday = pd.to_datetime(df.birthday, format = '%Y/%m/%d')
# 将手机号转换为字符串
df.tel = df.tel.astype('str')
# 新增年龄和工龄两列
df['age'] = pd.datetime.today().year - df.birthday.dt.year
df['workage'] = pd.datetime.today().year - df.start_work.dt.year
# 将手机号中间四位隐藏起来
df.tel = df.tel.apply(func = lambda x : x.replace(x[3:7], '****'))
# 取出邮箱的域名
df['email_domain'] = df.email.apply(func = lambda x : x.split('@')[1])
# 取出人员的专业信息
df['profession'] = df.other.str.findall('专业:(.*?),')
# 去除birthday、start_work和other变量
df.drop(['birthday','start_work','other'], axis = 1, inplace = True)
数据合并、连接与汇总
案例演示
# 构造数据集df1和df2 df1 = pd.DataFrame({'name':['张三','李四','王二'], 'age':[21,25,22], 'gender':['男','女','男']}) df2 = pd.DataFrame({'name':['丁一','赵五'], 'age':[23,22], 'gender':['女','女']}) # 数据集的纵向合并 pd.concat([df1,df2] , keys = ['df1','df2']) # 如果df2数据集中的“姓名变量为Name” df2 = pd.DataFrame({'Name':['丁一','赵五'], 'age':[23,22], 'gender':['女','女']}) # 数据集的纵向合并 pd.concat([df1,df2]) # 构造数据集 df3 = pd.DataFrame({'id':[1,2,3,4,5],'name':['张三','李四','王二','丁一','赵五'], 'age':[27,24,25,23,25],'gender':['男','男','男','女','女']}) df4 = pd.DataFrame({'Id':[1,2,2,4,4,4,5], 'score':[83,81,87,75,86,74,88] 'kemu':['科目1','科目1','科目2','科目1','科目2','科目3','科目1']}) df5 = pd.DataFrame({'id':[1,3,5],'name':['张三','王二','赵五'], 'income':[13500,18000,15000]}) # 三表的数据连接 # 首先df3和df4连接 merge1 = pd.merge(left = df3, right = df4, how = 'left', left_on='id', right_on='Id') merge1 # 再将连接结果与df5连接 merge2 = pd.merge(left = merge1, right = df5, how = 'left') merge2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24