京公网安备 11010802034615号
经营许可证编号:京B2-20210330
直方图你一定知道,那么灰度直方图呢?你了解吗?灰度直方图,顾名思义,就是先统计出来一幅图像中每一个像素出现的次数,之后再把每一个像素出现的次数除以总的像素个数,得到的结果就是这个像素的出现频率,最后再将像素和该像素的出现频率用图表示出来,就是灰度直方图。先简单通俗的介绍了灰度直方图,下面跟随小编一起详细了解一下吧。
一、灰度直方图概念
灰度直方图,是数字图像处理中,一种计算代价非很小,但是非常有用的工具,它概括出了一幅图像的灰度级信息。
灰度直方图是图像灰度级的函数,通常用来描述每个灰度级在图像矩阵中的像素个数或者占有率。灰度直方图横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率)。
一维直方图的结构:
可以将高维直方图理解为图像在每个维度上灰度级分布的直方图。最为常见的是二维直方图,二维中对应每个像素统计个变量。
二·、灰度直方图的性质:
1、灰度直方图只反映图像的灰度分布情况,不能反映图像像素的位置,也就是丢失了像素的位置信息
2、一幅图像对应的灰度直方图是唯一的,但是不同的图像却能够对应相同的直方图
3、将一幅图像分为多个区域,多个区域的直方图之和也就是原图像的直方图
三、创建灰度直方图
<span style="font-size:18px;">#include <iostream>
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
using namespace std;
IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图
float histMax = 0;
cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值
IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1);
cvZero(imgHist); //// 清空随机值
for(int i = 0; i < 255; i++)
{
float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值
float nextValue = cvQueryHistValue_1D(hist, i+1);
int numPt = 5;
CvPoint pt[5];
pt[0] = cvPoint(i*scaleX, 64*scaleY);
pt[1] = cvPoint((i+1)*scaleX, 64*scaleY);
pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY);
pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY);
pt[4] = cvPoint(i*scaleX, 64*scaleY);
cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255));
}
return imgHist;
}
int main()
{
IplImage *img = cvLoadImage("F:\\tongtong.jpg",1);
if(!img){
cout << "No data img" << endl;
}
int dims = 1;
int sizes = 256;
float range[] = {0,255};
float*ranges[]={range};
CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1);
cvClearHist(hist); //清除直方图里面的随机值
IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1);
IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1);
IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1);
cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解
cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图
IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来
cvClearHist(hist);
cvCalcHist(&imgGreen, hist, 0, 0);
IplImage *histGreen = DrawHistogram(hist);
cvClearHist(hist);
cvCalcHist(&imgRed, hist, 0, 0);
IplImage *histRed = DrawHistogram(hist);
cvClearHist(hist);
cvNamedWindow("show",0);
cvNamedWindow("B", 0);
cvNamedWindow("G", 0);
cvNamedWindow("R", 0);
cvShowImage("show",img);
cvShowImage("B",histBlue);
cvShowImage("G",histGreen);
cvShowImage("R", histRed);
cvWaitKey(0);
cvReleaseImage(&img);
cvDestroyWindow("show");
cvReleaseImage(&histBlue);
cvDestroyWindow("B");
cvReleaseImage(&histGreen);
cvDestroyWindow("G");
cvReleaseImage(&histRed);
cvDestroyWindow("R");
return 0;
}</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13