京公网安备 11010802034615号
经营许可证编号:京B2-20210330
直方图你一定知道,那么灰度直方图呢?你了解吗?灰度直方图,顾名思义,就是先统计出来一幅图像中每一个像素出现的次数,之后再把每一个像素出现的次数除以总的像素个数,得到的结果就是这个像素的出现频率,最后再将像素和该像素的出现频率用图表示出来,就是灰度直方图。先简单通俗的介绍了灰度直方图,下面跟随小编一起详细了解一下吧。
一、灰度直方图概念
灰度直方图,是数字图像处理中,一种计算代价非很小,但是非常有用的工具,它概括出了一幅图像的灰度级信息。
灰度直方图是图像灰度级的函数,通常用来描述每个灰度级在图像矩阵中的像素个数或者占有率。灰度直方图横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率)。
一维直方图的结构:
可以将高维直方图理解为图像在每个维度上灰度级分布的直方图。最为常见的是二维直方图,二维中对应每个像素统计个变量。
二·、灰度直方图的性质:
1、灰度直方图只反映图像的灰度分布情况,不能反映图像像素的位置,也就是丢失了像素的位置信息
2、一幅图像对应的灰度直方图是唯一的,但是不同的图像却能够对应相同的直方图
3、将一幅图像分为多个区域,多个区域的直方图之和也就是原图像的直方图
三、创建灰度直方图
<span style="font-size:18px;">#include <iostream>
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
using namespace std;
IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图
float histMax = 0;
cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值
IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1);
cvZero(imgHist); //// 清空随机值
for(int i = 0; i < 255; i++)
{
float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值
float nextValue = cvQueryHistValue_1D(hist, i+1);
int numPt = 5;
CvPoint pt[5];
pt[0] = cvPoint(i*scaleX, 64*scaleY);
pt[1] = cvPoint((i+1)*scaleX, 64*scaleY);
pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY);
pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY);
pt[4] = cvPoint(i*scaleX, 64*scaleY);
cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255));
}
return imgHist;
}
int main()
{
IplImage *img = cvLoadImage("F:\\tongtong.jpg",1);
if(!img){
cout << "No data img" << endl;
}
int dims = 1;
int sizes = 256;
float range[] = {0,255};
float*ranges[]={range};
CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1);
cvClearHist(hist); //清除直方图里面的随机值
IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1);
IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1);
IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1);
cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解
cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图
IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来
cvClearHist(hist);
cvCalcHist(&imgGreen, hist, 0, 0);
IplImage *histGreen = DrawHistogram(hist);
cvClearHist(hist);
cvCalcHist(&imgRed, hist, 0, 0);
IplImage *histRed = DrawHistogram(hist);
cvClearHist(hist);
cvNamedWindow("show",0);
cvNamedWindow("B", 0);
cvNamedWindow("G", 0);
cvNamedWindow("R", 0);
cvShowImage("show",img);
cvShowImage("B",histBlue);
cvShowImage("G",histGreen);
cvShowImage("R", histRed);
cvWaitKey(0);
cvReleaseImage(&img);
cvDestroyWindow("show");
cvReleaseImage(&histBlue);
cvDestroyWindow("B");
cvReleaseImage(&histGreen);
cvDestroyWindow("G");
cvReleaseImage(&histRed);
cvDestroyWindow("R");
return 0;
}</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26