直方图你一定知道,那么灰度直方图呢?你了解吗?灰度直方图,顾名思义,就是先统计出来一幅图像中每一个像素出现的次数,之后再把每一个像素出现的次数除以总的像素个数,得到的结果就是这个像素的出现频率,最后再将像素和该像素的出现频率用图表示出来,就是灰度直方图。先简单通俗的介绍了灰度直方图,下面跟随小编一起详细了解一下吧。
一、灰度直方图概念
灰度直方图,是数字图像处理中,一种计算代价非很小,但是非常有用的工具,它概括出了一幅图像的灰度级信息。
灰度直方图是图像灰度级的函数,通常用来描述每个灰度级在图像矩阵中的像素个数或者占有率。灰度直方图横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率)。
一维直方图的结构:
可以将高维直方图理解为图像在每个维度上灰度级分布的直方图。最为常见的是二维直方图,二维中对应每个像素统计个变量。
二·、灰度直方图的性质:
1、灰度直方图只反映图像的灰度分布情况,不能反映图像像素的位置,也就是丢失了像素的位置信息
2、一幅图像对应的灰度直方图是唯一的,但是不同的图像却能够对应相同的直方图
3、将一幅图像分为多个区域,多个区域的直方图之和也就是原图像的直方图
三、创建灰度直方图
<span style="font-size:18px;">#include <iostream>
#include "cv.h"
#include "highgui.h"
#include "cxcore.h"
using namespace std;
IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图
float histMax = 0;
cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值
IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1);
cvZero(imgHist); //// 清空随机值
for(int i = 0; i < 255; i++)
{
float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值
float nextValue = cvQueryHistValue_1D(hist, i+1);
int numPt = 5;
CvPoint pt[5];
pt[0] = cvPoint(i*scaleX, 64*scaleY);
pt[1] = cvPoint((i+1)*scaleX, 64*scaleY);
pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY);
pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY);
pt[4] = cvPoint(i*scaleX, 64*scaleY);
cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255));
}
return imgHist;
}
int main()
{
IplImage *img = cvLoadImage("F:\\tongtong.jpg",1);
if(!img){
cout << "No data img" << endl;
}
int dims = 1;
int sizes = 256;
float range[] = {0,255};
float*ranges[]={range};
CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1);
cvClearHist(hist); //清除直方图里面的随机值
IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1);
IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1);
IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1);
cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解
cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图
IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来
cvClearHist(hist);
cvCalcHist(&imgGreen, hist, 0, 0);
IplImage *histGreen = DrawHistogram(hist);
cvClearHist(hist);
cvCalcHist(&imgRed, hist, 0, 0);
IplImage *histRed = DrawHistogram(hist);
cvClearHist(hist);
cvNamedWindow("show",0);
cvNamedWindow("B", 0);
cvNamedWindow("G", 0);
cvNamedWindow("R", 0);
cvShowImage("show",img);
cvShowImage("B",histBlue);
cvShowImage("G",histGreen);
cvShowImage("R", histRed);
cvWaitKey(0);
cvReleaseImage(&img);
cvDestroyWindow("show");
cvReleaseImage(&histBlue);
cvDestroyWindow("B");
cvReleaseImage(&histGreen);
cvDestroyWindow("G");
cvReleaseImage(&histRed);
cvDestroyWindow("R");
return 0;
}</span>