
2020-07-20
直方图你一定知道,那么灰度直方图呢?你了解吗?灰度直方图,顾名思义,就是先统计出来一幅图像中每一个像素出现的次数,之后再把每一个像素出现的次数除以总的像素个数,得到的结果就是这个像素的出现频率,最后再将像素和该像素的出现频率用图表示出来,就是灰度直方图。先简单通俗的介绍了灰度直方图,下面跟随小编一起详细了解一下吧。
一、灰度直方图概念
灰度直方图,是数字图像处理中,一种计算代价非很小,但是非常有用的工具,它概括出了一幅图像的灰度级信息。
灰度直方图是图像灰度级的函数,通常用来描述每个灰度级在图像矩阵中的像素个数或者占有率。灰度直方图横坐标是灰度级,纵坐标表示图像中该灰度级出现的个数(频率)。
一维直方图的结构:
可以将高维直方图理解为图像在每个维度上灰度级分布的直方图。最为常见的是二维直方图,二维中对应每个像素统计个变量。
二·、灰度直方图的性质:
1、灰度直方图只反映图像的灰度分布情况,不能反映图像像素的位置,也就是丢失了像素的位置信息
2、一幅图像对应的灰度直方图是唯一的,但是不同的图像却能够对应相同的直方图
3、将一幅图像分为多个区域,多个区域的直方图之和也就是原图像的直方图
三、创建灰度直方图
<span style="font-size:18px;">#include <iostream> #include "cv.h" #include "highgui.h" #include "cxcore.h" using namespace std; IplImage *DrawHistogram(CvHistogram*hist, float scaleX = 1, float scaleY = 1){ // 画直方图 float histMax = 0; cvGetMinMaxHistValue(hist, 0 , &histMax, 0, 0); // 取得直方图中的最值 IplImage *imgHist = cvCreateImage(cvSize(256 * scaleX, 64*scaleY), 8, 1); cvZero(imgHist); //// 清空随机值 for(int i = 0; i < 255; i++) { float histValue = cvQueryHistValue_1D(hist, i); // 取得直方图中的i值 float nextValue = cvQueryHistValue_1D(hist, i+1); int numPt = 5; CvPoint pt[5]; pt[0] = cvPoint(i*scaleX, 64*scaleY); pt[1] = cvPoint((i+1)*scaleX, 64*scaleY); pt[2] = cvPoint((i+1)*scaleX, (1 -(nextValue/histMax))* 64 * scaleY); pt[3] = cvPoint((i+1)*scaleX, (1 -(histValue/histMax))* 64 * scaleY); pt[4] = cvPoint(i*scaleX, 64*scaleY); cvFillConvexPoly(imgHist, pt, numPt, cvScalarAll(255)); } return imgHist; } int main() { IplImage *img = cvLoadImage("F:\\tongtong.jpg",1); if(!img){ cout << "No data img" << endl; } int dims = 1; int sizes = 256; float range[] = {0,255}; float*ranges[]={range}; CvHistogram *hist = cvCreateHist(dims, &sizes, CV_HIST_ARRAY, ranges, 1); cvClearHist(hist); //清除直方图里面的随机值 IplImage *imgBlue = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgGreen = cvCreateImage(cvGetSize(img), 8, 1); IplImage *imgRed = cvCreateImage(cvGetSize(img), 8, 1); cvSplit(img, imgBlue, imgGreen, imgRed, NULL); //将多通道图像分解 cvCalcHist(&imgBlue, hist, 0, 0); // 计算图像的直方图 IplImage *histBlue = DrawHistogram(hist); // 将直方图中的数据画出来 cvClearHist(hist); cvCalcHist(&imgGreen, hist, 0, 0); IplImage *histGreen = DrawHistogram(hist); cvClearHist(hist); cvCalcHist(&imgRed, hist, 0, 0); IplImage *histRed = DrawHistogram(hist); cvClearHist(hist); cvNamedWindow("show",0); cvNamedWindow("B", 0); cvNamedWindow("G", 0); cvNamedWindow("R", 0); cvShowImage("show",img); cvShowImage("B",histBlue); cvShowImage("G",histGreen); cvShowImage("R", histRed); cvWaitKey(0); cvReleaseImage(&img); cvDestroyWindow("show"); cvReleaseImage(&histBlue); cvDestroyWindow("B"); cvReleaseImage(&histGreen); cvDestroyWindow("G"); cvReleaseImage(&histRed); cvDestroyWindow("R"); return 0; }</span>
完 谢谢观看