京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python是一款功能强大的数据分析工具,我们在平时的工作和生活中经常会用到。但是你知道如何使用python来提取视频中的素材吗?小编今天跟大家分享的就是如何使用python简单快速地提取电影中的片段,学会之后,能够省去我们剪辑的麻烦哦。
以下内容来源: Python的乐趣
作者: 一粒米饭
在上一篇中实现了基于人脸识别提取人物片段的功能,但是在实践过程中发现,如果是一部电影,那么提取到的片段太多了。为了找女神的电影片段,还要在辣么多剪辑中苦苦手工筛选,这个不是一个优秀的程序员应该做的。
经过一番实践和探索,发现了一个强大的库,叫做face_recognition。
本菜鸟也尝试过用opencv识别出图像,通过图像指纹计算出相似度,抑或通过图片向量的余弦相似度计算,奈何实现复杂,效果也不如face_recognition,只好弃暗投明。
face_recognition使用 dlib 顶尖的深度学习人脸识别技术构建,在户外脸部检测数据库基准(Labeled Faces in the Wild benchmark)上的准确率高达 99.38%。
项目地址:https://github.com/ageitgey/face_recognition#face-recognition
官方介绍了face_recognition以下基本功能:
1.1 找出图片中的人脸
1.2 找到并且控制图像中的脸部特征
1.3 识别图片中的人脸
在本文中使用的就是它的第三个功能识别图片中的人脸。
face需要依赖于dlib,dlib的安装参考How to install dlib v19.9 or newer from github on macOS and Ubuntu
face_recognition的使用需要基于Python3.3以上或Python2.7,操作系统为MacOS或Linux(Windows不提供官方支持)。安装命令如下:
$ pip install face_recognition
安装完成后可以在命令行使用face_recognition或在Python中调用。以在Python中“识别女神李一桐”为例,其过程如下:
Python代码如下:
import face_recognition
# 初始化
picture_of_liyitong = face_recognition.load_image_file("yilitong.jpg")
liyitong_encoding = face_recognition.face_encodings(picture_of_liyitong)[0]
# 加载对比图片
unknown_picture = face_recognition.load_image_file("unknown.jpg")
unknown_face_encoding = face_recognition.face_encodings(unknown_picture)[0]
# 用`compare_faces`方法继续对比得到结果,
# 值得注意的是第一个参数是一个列表,可以传多个图片参数进行对比
results = face_recognition.compare_faces([liyitong_encoding], unknown_face_encoding)
if results[0] == True:
print("图片中包含女神")
else:
print("未找到女神!")
提取女神视频的过程与之前《从视频中自动提取人物的视频片段》的思路类似。
1.1. 获取图片,用moivepy读取视频,用iter_frames方法从中获取图片帧;
1.2. 标记时间点,利用opencv识别图片中的人物并标记人物出现的起始时间点和结束时间点,并将这些时间点放到到一个列表中。
1.3. 视频截取,用moivepy将上一步中标记的时间片段从视频中截取出来,最后筛选出需要的视频片段即可。
只是将上面第二步中“用opencv识别图片中的人物”改为“用face_recognition进行对比”。代码实现如下:
from moviepy.editor import VideoFileClip
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
import face_recognition
def contain_godness(img, godness_encoding):
face_locations = face_recognition.face_locations(img)
is_godness = False
for (top_right_y, top_right_x, left_bottom_y,left_bottom_x) in face_locations:
unknown_image = img[top_right_y-50:left_bottom_y+50, left_bottom_x-50:top_right_x+50]
unknown_encoding = face_recognition.face_encodings(unknown_image)
if unknown_encoding:
results = face_recognition.compare_faces([godness_encoding], unknown_encoding[0])
print(results)
is_godness = results[0]
return is_godness
def find_durations(clip, godness_encoding):
"""
从视频中搜索女神片段
"""
duration_list = [] # 存储片段时间列表
start_time = 0 # 记录片段开始时间, 以毫秒为单位
end_time = 0 # 记录片段结束时间, 以毫秒为单位
last_index = 0
for i, img in enumerate(clip.iter_frames(fps=20)):
print(i)
flag = contain_godness(img, godness_encoding)
if flag and start_time == 0:
start_time = i / 20
last_index = i
if start_time > 0 and not flag:
end_time = i / 20
duration_list.append([start_time, end_time])
# 重置开始时间和结束时间
start_time = end_time = 0
# 打印片段时间列表并返回
print(duration_list)
return duration_list
if __name__ == "__main__":
filename = "demo.mp4"
clip = VideoFileClip(filename)
godness_image = face_recognition.load_image_file("godness.png")
godness_encoding = face_recognition.face_encodings(godness_image)[0]
durations = find_durations(clip, godness_encoding)
for d in durations:
start_t, end_t = d
ffmpeg_extract_subclip(filename, start_t, end_t)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26