
今天跟大家分享的是:K-s曲线,直接上干货。
一、K-s曲线是什么
K-s全称:Kolmogorov-Smirnov,中文名叫做洛伦兹曲线,Ks经常被用于模型风险区分能力进行评估, 指标衡量的是好坏样本累计分部之间的差值。好坏样本累计差异越大,Ks指标越大,那么模型的风险区分能力越强。
K-s曲线的数据来源和本质是与ROC曲线是一致的,只不过ROC曲线是将真正类率和假正类率作为横纵轴,K-s曲线则是把真正率和假正率都当作是纵轴,横轴为选定的阈值。
简单来理解就是:K-s曲线是两条线,横轴是阈值,纵轴是TPR与FPR的值,值范围[0.1] 。TPR与FPR这两条曲线之间相距最远的地方对应的阈值,为最能划分模型的阈值。
下面来解释以下TPR与FPR:
TPR:真正类率(true positive rate), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。
FPR:假正类率(false positive rate),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。
其中:
TP:真实为1且预测为1的数目
FN:真实为1且预测为0的数目
FP:真实为0的且预测为1的数目
TN:真实为0的且预测为0的数目
K-S值计算公式:K-S=max(TPR-FPR)
K-S值<0.2.一般认为模型没有区分能力。
K-S值[0.2.0.3],模型具有一定区分能力,勉强可以接受
K-S值[0.3.0.5],模型具有较强的区分能力。
K-S值大于0.75.往往表示模型有异常。
二、K-s曲线绘制
import matplotlib.pyplot as plt #第一个参数是模型的预测值,第二个参数是模型的真实值 def draw_ks_curve(predict_result,true_result): tpr_list = [] #存放真正率数据 fpr_list = [] #存放假正率数据 dif_list = [] #存放真假正率差值 max_ks_dot = [] for i in np.arange(0,1.1,0.1): tpr = 0 fpr = 0 for j in range(len(predict_result)): if list(predict_result[j])[0]>i and true_result[j]==1: tpr = tpr+1 tpr_list.append(tpr) if list(predict_result[j])[0]>i and true_result[j]==0: fpr = fpr+1 fpr_list.append(fpr) tpr = tpr/sum(true_result) fpr = fpr/(len(true_result)-sum(true_result)) fig = plt.figure(num=1, figsize=(15, 8),dpi=80) #开启一个窗口,同时设置大小,分辨率 plt.plot(np.arange(0,1,0.1),tpr_list) plt.plot(np.arange(0,1,0.1),fpr_list)
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23