京公网安备 11010802034615号
经营许可证编号:京B2-20210330
今天跟大家分享的是:K-s曲线,直接上干货。
一、K-s曲线是什么
K-s全称:Kolmogorov-Smirnov,中文名叫做洛伦兹曲线,Ks经常被用于模型风险区分能力进行评估, 指标衡量的是好坏样本累计分部之间的差值。好坏样本累计差异越大,Ks指标越大,那么模型的风险区分能力越强。
K-s曲线的数据来源和本质是与ROC曲线是一致的,只不过ROC曲线是将真正类率和假正类率作为横纵轴,K-s曲线则是把真正率和假正率都当作是纵轴,横轴为选定的阈值。
简单来理解就是:K-s曲线是两条线,横轴是阈值,纵轴是TPR与FPR的值,值范围[0.1] 。TPR与FPR这两条曲线之间相距最远的地方对应的阈值,为最能划分模型的阈值。
下面来解释以下TPR与FPR:
TPR:真正类率(true positive rate), 计算公式为TPR=TP/ (TP+ FN),刻画的是分类器所识别出的 正实例占所有正实例的比例。
FPR:假正类率(false positive rate),计算公式为FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。
其中:
TP:真实为1且预测为1的数目
FN:真实为1且预测为0的数目
FP:真实为0的且预测为1的数目
TN:真实为0的且预测为0的数目
K-S值计算公式:K-S=max(TPR-FPR)
K-S值<0.2.一般认为模型没有区分能力。
K-S值[0.2.0.3],模型具有一定区分能力,勉强可以接受
K-S值[0.3.0.5],模型具有较强的区分能力。
K-S值大于0.75.往往表示模型有异常。
二、K-s曲线绘制
import matplotlib.pyplot as plt #第一个参数是模型的预测值,第二个参数是模型的真实值 def draw_ks_curve(predict_result,true_result): tpr_list = [] #存放真正率数据 fpr_list = [] #存放假正率数据 dif_list = [] #存放真假正率差值 max_ks_dot = [] for i in np.arange(0,1.1,0.1): tpr = 0 fpr = 0 for j in range(len(predict_result)): if list(predict_result[j])[0]>i and true_result[j]==1: tpr = tpr+1 tpr_list.append(tpr) if list(predict_result[j])[0]>i and true_result[j]==0: fpr = fpr+1 fpr_list.append(fpr) tpr = tpr/sum(true_result) fpr = fpr/(len(true_result)-sum(true_result)) fig = plt.figure(num=1, figsize=(15, 8),dpi=80) #开启一个窗口,同时设置大小,分辨率 plt.plot(np.arange(0,1,0.1),tpr_list) plt.plot(np.arange(0,1,0.1),fpr_list)
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19