
python是一款功能强大的数据分析工具,上手比较简单,因此现在很多人都在学习和使用python。要想熟练应用python到工作和生活中,必须掌握python的基础知识,今天小编就与大家分享python 为什么用 # 号作注释符,希望对大家学习和使用python有所帮助。
文章来源: Python猫
作者:豌豆花下猫
关于编程语言中的注释,其重要性基本上已为大家所共识。
然而关于注释的规范,这个话题就像我们之前聊过的缩进、终止符和命名方式一样,众口难调。
注释符通常可分为两种,即行注释与块注释(inline/block),它们在不同的编程语言中的符号可谓让人眼花缭乱。
比如行注释符,它至少有以下的 17 种之多(出自维基百科):
其中两个最大的阵营分别是“//”与“#”号:
那么,Python 为什么用“#”号作注释符,而不是“//”呢?
这个问题恐怕没办法从解析的效率、符号的辨识度和输入的便利性等方面回答,因为它们基本上没有区别。
我没有找到官方的解释,但是从这些注释符的阵营中,已经不难得出一个较为合理的解释:
Python 在创造之初,从 C 和 Shell 语言中借鉴了不少东西,但它是一种脚本语言,因此在注释符这个最为基础的语言要素上,就偏向了脚本语言的传统。
在某些“类脚本语言”中,比如 yaml、conf 和 ini 等格式的配置文件,它们大多也是采用脚本语言的“#”号作为注释符。
所以,Python 行内注释符的选择,大概可以归结为一种历史原因,即借鉴了 Shell 脚本语言的写法。
相比于行注释符的多样,块注释符更加是让人眼花缭乱:
大多数写法是我从未见过的,有些甚至是难以忍受的,槽点太多!
在这份表格里,我们看不到 Python,因为从严格意义上讲,Python 并没有块注释符!
一般而言,我们在连续的每行内容前面加“#”号,达到块注释的效果。块注释被看作是多个行注释。
PEP-8 中是这么建议的:
Each line of a block comment starts with a # and a single space (unless it is indented text inside the comment).
有人曾在 Twitter 上发问,为什么 Python 没有块注释符?
Guido 回复称,可以将多行字符串用作块注释:
Python 的多行字符串用三对单引号或双引号表示,它还可以用作文档字符串(即Documentation Strings,简写docstrings)。
但是,将它当做多行注释符使用,在语义上则有点怪怪的——它表示的是一段字符串,虽然没有赋值给变量,不会生成代码,但是它并非语义上的注释。
由于脚本语言的特性,它允许我们写一段“无根的字符串”,在语法上没有问题,也没有负作用(negative effects),但是,如果把它作为注释使用,这就是一种副作用(side effects)了。
从这点上考虑,我虽然不反对有人把多行字符串写法用作块注释,但是我会更推荐大家使用“#”号作注释。
另外,对于无用的代码,最好的做法就是直接删除,如果后续发现有需要,再回退修改。详细的多行注释尽量放在文档字符串中,这样在核心代码中就会很少出现多行注释的情况了。
对于 Python 的注释符用法,大家是怎么想的呢?欢迎留言交流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08