
在数据处理过程中,经常会遇到偏态数据。我们都知道数据整体服从正态分布,那样本均值和方差则相互独立。因此大家都会希望数据事成正态分布的,但是现实情况却是:大多数情况下,数据都是偏态分布的,这时候就需要我们将偏态数据正态化。今天,小编跟大家分享的就是将偏态数据正态化的处理方法,希望对大家研究和学习偏态数据有所帮助。
由图中可知,正态分布,两头低,中间高,整个形态是对称钟形的一个分布的状态。大量连续数据测量时,我们最希望的就是数据可以成这种状态,也就是正态分布,一个标准的正态分布是u(均值)=0.σ(标准差)=1.
横坐标代表随机变量X的一个取值,在均值(u=0)附近概率密度最大,越偏离均值,概率密度减小,不在(u-3σ,u+3σ)范围内的数据就属于统计学意义上的异常值了。
根据图中可以看出,偏态分布,分为两种情况,左偏又叫负偏态,以及右偏又叫正偏态,也可以用偏度来表示,偏度>0.也就是频数分布的高峰向左偏移,呈右(正)偏态分布;偏度<0.即频数分布的高峰向右偏移,呈左(负)偏态分布;|偏度|>1.呈高度偏态,0.5<|偏度|<1.呈中等偏态。
二、检验数据是否服从正态分布
rom scipy.stats import norm sns.distplot(train['SalePrice'],fit=norm) #均值和方差 (mu,sigma) = norm.fit(train['SalePrice']) print('n mu = {:.2f} and sigma = {:.2f}n'.format(mu, sigma)) plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') fig =plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show()
三、偏态数据处理
如果检测到数据是呈偏态分布,我们需要将其其变换为正态分布,常用的几种变换方式为:
1、对数变换:即将原始数据X的对数值作为新的分布数据,适用于相乘关系的数据、高度偏态的数据
2、平方根变换:即即将原始数据X的平方根作为新的分布数据。适用于泊松分布(方差与均数近似相等)的数据、轻度偏态的数据
3、倒数变换1/x:即将原始数据X的倒数作为新的分析数据。适用于两端波动较大的数据
4、反正弦变换:即将原始数据X的平方根反正弦值做为新的分析数据。适用于百分比的数据、中度偏态的数据
#用对数化解决偏态 log(1+x) train['SalePrice'] = np.log1p(train['SalePrice']) sns.distplot(train['SalePrice'],fit=norm) (mu, sigma) = norm.fit(train['SalePrice']) print( 'n mu = {:.2f} and sigma = {:.2f}n'.format(mu, sigma)) #Now plot the distribution plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') #Get also the QQ-plot fig = plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show()
相关性分析是一项重要的数据分析工具,可以帮助我们理解变量之间的关系并做出相应的推断。通过散点图、相关系数和回归分析等方法,我们可以定量地衡量变量之间的相关程度,并将其应用于各个领域的研究与实践中。深入理解相关性分析的原理和应用,对于数据科学家和决策者来说都是至关重要的技能。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12