京公网安备 11010802034615号
经营许可证编号:京B2-20210330
HDFS 全称为Hadoop Distributed File System,是 hadoop 分布式文件系统,具体来说,是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File System)。最主要的作用是作为 Hadoop 生态中各系统的存储服务。HDFS是Hadoop项目的核心子项目,为分布式计算中,数据存储管理的基础,HDFS是基于流数据模式访问和处理超大文件的需求被开发出来的,能够在廉价的商用服务器上运行。HDFS 具有高容错性、高可靠性、高可扩展性、高获得性、高吞吐率等特征,这些特征使得HDFS为海量数据提供了不怕故障的存储,从而为超大数据集(Large Data Set)的应用处理带来了很多便利。
高度容错性:HDFS 最核心的架构目标是,错误检测和快速、自动的恢复 。数据会自动保存多个副本。它通过增加副本的形式,而且就算某一副本丢失,HDFS也能自动恢复。
支持大规模数据集: HDFS 应用具有很大的数据集,可以支持整体上高的数据传输带宽,并且能够支撑数以千万集的文件。
支持流式读取数据: 一次写入,多次读取。而且文件一旦写入,就不能进行修改,只能追加。这样很好的保证了数据的一致性。
高吞吐量:吞吐量是指单位时间内完成的工作量。HDFS通过并行处理数据,从而大大减少了处理时间,实现了高吞吐量。
移动计算而非移动数据:一个应用的请求,如果离它操作的数据越近就会越高效,HDFS会把数据位置暴露给计算框架, 提供了将它们自己移动到数据附近的接口。
异构软硬件平台间的可移植性:平台的可移植性,方便用户也方便 HDFS 作为大规模数据应用平台的推广。
二、HDFS 常用命令参数
| -help | 输出这个命令参数手册 |
| -ls | 显示目录信息 |
| -mkdir | 在hdfs上创建目录 |
| -moveFromLocal | 从本地剪切粘贴到hdfs |
| -moveToLocal | 从hdfs剪切粘贴到本地 |
| --appendToFile | 追加一个文件到已经存在的文件末尾 |
| -cat | 显示文件内容 |
| -tail | 显示一个文件的末尾 |
| -text | 以字符形式打印一个文件的内容 |
| -chgrp、-chmod、-chown | 同linux文件系统中的用法,对文件所属权限 |
| -copyFromLocal | 从本地文件系统中拷贝文件到hdfs路径去 |
| -copyToLocal | 从hdfs拷贝到本地 |
| -cp | 从hdfs的一个路径拷贝hdfs的另一个路径 |
| -mv | 在hdfs目录中移动文件 |
| -get | 等同于copyToLocal,就是从hdfs下载文件到本地 |
| -getmerge | 合并下载多个文件 |
| -put | 等同于copyFromLocal |
| -rm | 删除文件或文件夹 |
| -rmdir | 删除空目录 |
| -df | 统计文件系统的可用空间信息 |
| -du | 统计文件夹的大小信息 |
| -count | 统计一个指定目录下的文件节点数量 |
| -setrep | 设置hdfs中文件的副本数量 |
三、HDFS工作机制
1. HDFS集群包括两大角色:NameNode、DataNode
2. NameNode负责管理整个文件系统的元数据
3. DataNode 负责管理用户的文件数据块
4. 文件会按照固定的大小(blocksize)切分成若干块后,分布式存储于若干台datanode上
5. 每一个文件块能够有多个副本,并存放在不同的datanode上
6. Datanode定期会向Namenode汇报自身保存的文件block信息,而namenode就会负责保持文件的副本数量
7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是以通过向namenode申请进行的
HDFS文件写入时:首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
HDFS文件读取:将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21