京公网安备 11010802034615号
经营许可证编号:京B2-20210330
箱型图,又叫做箱线图(Boxplot),或者箱须图(Box-whisker Plot),另外,盒式图指的也是它。箱型图通常是被用作观察数据整体的分布情况,是通过数据中的五个统计量:最小值(上边界)、上四分位数(75/%分位数)、中位数、下四分位数(25/%分位数)与最大值(下边界)来描述数据的一种统计图。通过计算这些统计量,生成一个箱型图,可以直观地显示出数据的异常值,分布的离散程度以及数据的对称性。箱型图包含了大部分的正常数据,但是如果是位于箱体上边界和下边界之外的,就是异常数据。
一、箱型图5要素
中位数:二分之一分位数。计算的方法为:将一组数据按从小到大顺序排列后的处于中间位置的值。
注意:
如果原始序列长度n是奇数,那么中位数所在位置是(n+1)/2;
如果原始序列长度n是偶数,那么中位数所在位置是n/2.n/2+1.中位数的值等于这两个位置的数的算数平均数。
下四分位数Q1:位于数据序列25%位置处的数
四分位数的求法,是将序列平均分成四份。具体的计算目前有(n+1)/4与(n-1)/4两种,一般使用(n+1)/4.简单来说,也就是四分之一分位数即第(n+1)/4个数
上四分位数Q3:位于数据序列75%位置处的数。与下四分位数所在位置计算方法类似,为(1+n)/4*3=6.75.也就是介于第六与第七个位置之间的地方,对应的具体的值为0.75*6+0.25*7=6.25.
四分位间距IQR:IQR表示上下四分位差,系数1.5是一种经过大量分析和经验积累起来的标准,一般情况下不做调整。计算方法为: IQR = Q3-Q1
下限:非异常范围内的最大值= Q1 – 1.5 *IQR
上限:非异常范围内的最小值= Q3 + 1.5 *IQR
二、箱型图特性
1.能够直观的显示出异常值,如果数据有离群点,也就是位于上下边界之外,并以圆点来表示
2.如果箱型图很短,那么就代表着大部分数据都集中分布在很小的范围之内
3.如果箱型图很长,就代表着数据分布比较离散,数据间的差异较大
4.中位数所处的高低位置,可以反映数据的偏斜程度,如果中位数接近顶部,代表大部分的数据值比较大,反之,如果中位数接近底部,代表大部分的数据值比较小
5.上下虚线比较长时,代表着上下四分位数之外的数据变化较大,整体数据的方差和标准偏差也比较大
6.箱型图的上下边界代表着非异常范围内的最大值或最小值
另外,虽然通过箱型图可以清晰看出数据的分布偏态,但是箱型图并不能显示出关于数据分布偏态和尾重程度的精确度量。而且当数据量很大时,箱型图反映出来的数据信息会更加模糊。因此,建议结合均值、标准差、偏度、分布函数等工具一起使用。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10