京公网安备 11010802034615号
经营许可证编号:京B2-20210330
箱型图,又叫做箱线图(Boxplot),或者箱须图(Box-whisker Plot),另外,盒式图指的也是它。箱型图通常是被用作观察数据整体的分布情况,是通过数据中的五个统计量:最小值(上边界)、上四分位数(75/%分位数)、中位数、下四分位数(25/%分位数)与最大值(下边界)来描述数据的一种统计图。通过计算这些统计量,生成一个箱型图,可以直观地显示出数据的异常值,分布的离散程度以及数据的对称性。箱型图包含了大部分的正常数据,但是如果是位于箱体上边界和下边界之外的,就是异常数据。
一、箱型图5要素
中位数:二分之一分位数。计算的方法为:将一组数据按从小到大顺序排列后的处于中间位置的值。
注意:
如果原始序列长度n是奇数,那么中位数所在位置是(n+1)/2;
如果原始序列长度n是偶数,那么中位数所在位置是n/2.n/2+1.中位数的值等于这两个位置的数的算数平均数。
下四分位数Q1:位于数据序列25%位置处的数
四分位数的求法,是将序列平均分成四份。具体的计算目前有(n+1)/4与(n-1)/4两种,一般使用(n+1)/4.简单来说,也就是四分之一分位数即第(n+1)/4个数
上四分位数Q3:位于数据序列75%位置处的数。与下四分位数所在位置计算方法类似,为(1+n)/4*3=6.75.也就是介于第六与第七个位置之间的地方,对应的具体的值为0.75*6+0.25*7=6.25.
四分位间距IQR:IQR表示上下四分位差,系数1.5是一种经过大量分析和经验积累起来的标准,一般情况下不做调整。计算方法为: IQR = Q3-Q1
下限:非异常范围内的最大值= Q1 – 1.5 *IQR
上限:非异常范围内的最小值= Q3 + 1.5 *IQR
二、箱型图特性
1.能够直观的显示出异常值,如果数据有离群点,也就是位于上下边界之外,并以圆点来表示
2.如果箱型图很短,那么就代表着大部分数据都集中分布在很小的范围之内
3.如果箱型图很长,就代表着数据分布比较离散,数据间的差异较大
4.中位数所处的高低位置,可以反映数据的偏斜程度,如果中位数接近顶部,代表大部分的数据值比较大,反之,如果中位数接近底部,代表大部分的数据值比较小
5.上下虚线比较长时,代表着上下四分位数之外的数据变化较大,整体数据的方差和标准偏差也比较大
6.箱型图的上下边界代表着非异常范围内的最大值或最小值
另外,虽然通过箱型图可以清晰看出数据的分布偏态,但是箱型图并不能显示出关于数据分布偏态和尾重程度的精确度量。而且当数据量很大时,箱型图反映出来的数据信息会更加模糊。因此,建议结合均值、标准差、偏度、分布函数等工具一起使用。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10