
半监督学习(SSL),全称Semi-Supervised Learning,类属于机器学习(Machine Learning,ML)。在只有少量标记样本,大部分样本都是无标记的情况下,可以使用半监督学习方法,根据无标记样本与标记样本间的相似度、以及无标记样本潜在的分布,这两个核心思想,对无标记的样本进行标记。下面介绍一下半监督学习的种类:
1 生成式方法
生成式方法(generative methods)是直接基于生成式模型的方法,这一方法是假设所有数据(无论是有标记还是没有标记)都是由同一潜在的模型生成的。这个假设利用潜在模型的参数,将未标记数据与学习目标联系起来,而未标记数据的标记能够当作模型的缺失参数,然后基于EM算法,进行极大似然估计求解。生成式方法的重点在于生成式模型的假设,不同的模型假设会产生不同的方法。当然这一方法的关键也就是这个模型假设必须是准确的,也就是假设的生成式模型必须是与真实数据分布相吻合的;不然利用未标记数据反而会降低泛化性能。生成式方法方法实现简单,但是在实际应用中,事先很难做出准确的模型假设。
半监督支持向量机,Semi-Supervised Vector Machin,是支持向量机在半监督学习上的推广。在不考虑未标记样本的情况下,支持向量机试图找到最大间隔划分超平面;在考虑未标记样本的情况下,半监督支持向量机试图找到,能将两类有标记样本区分开,并且穿过数据低密度区域的划分超平面。低密度分隔(low-densityseparation)假设是聚类假设在考虑了线性超平面划分后的推广。TSVM是采用局部搜索的策略来进行迭代求解,也就是首先使用有标记样本集训练出一个初始SVM,接着通过该学习器对未标记样本进行打标,这样使得所有样本都有了标记,并基于这些有标记的样本重新训练SVM,之后再寻找易出错样本不断调整。
3协同训练(基于分歧的方法)
协同训练基于大量模型,让每一个模型去寻找最有把握的样本,并作为其他模型的训练样本,这一互相学习、共同进步的过程不断迭代,直到两个分裂期不再变化。不同的视图、不同的算法、不同的数据、不同的参数都是产生差异的渠道。协同训练能够通过将样本集拆分成不同的子样本集,并分别在子样本集上训练模型,就会产生多个模型;也可以对样本集建立不同的分类模型,通过各个模型决定样本的置信度,与集成学习类似。
4图半监督学习
5半监督聚类
聚类是无监督学习任务,为了利用现实任务中获得的监督信息,提出半监督聚类(semi-supervised clustering)来利用监督信息以获得更好的效果。
聚类任务中获得的监督信息分两种:1)有必连(must-link)和勿连(cannot-link)约束,必连是指样本必属于同一个簇,勿连是指样本必不属于同一个簇;2)含有少量的有标记样本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04