
前面我们了解了决策树的概念,现在来了解一下决策树剪枝。可能会有人问:为什么要剪枝?答案是:如果一棵决策树完全生长,那么这棵决策树所对应的每一个叶节点中只会包含一个样本,就很有可能面临过拟合问题,因此就需要我们对这棵决策树进行剪枝,以此来提高此决策树模型的泛化能力。
一般情况下,可以使用以下两类方法对决策树进行剪枝,缩小决策树的规模:
一、预剪枝:
预剪枝的核心思想是在树中节点进行扩展之前,先计算当前的划分是否能提升模型泛化能力,如果不能,则不再继续生长子树。此时可能出现不同类别的样本同时存于节点中的情况,可以通过使用多数投票的原则对该节点所属类别进行判断。关于预剪枝何时停止决策树的生长,可以采用以下几种方法:
(1) 当树达到一定深度的时候,停止树的生长;
(2) 当到达当前节点的样本数量比某个阈值小的时候,停止树的生长;
(3) 计算决策树的每一次分裂能否提升测试集的准确度,当提升程度小于某个阈值的时候,不再继续生树的长。
预剪枝具有思想直接、算法简单、效率高等一系列特点,适合解决大规模数据的问题。但是,对于上述阈值,需要一定的经验来进行判断。另外,预剪枝存在欠拟合风险。这是因为,虽然当前的划分会导致测试集准确率降低或提升不高,但在之后的划分中,准确率会有显著提升也不无可能。
二、后剪枝:
后剪枝的核心思想是先让算法生成一颗完全生长的决策树,然后自底层向上计算是否进行剪枝操作。后剪枝也需要通过在测试集上的准确率来进行判断,如果剪枝之后,能够提升准确率,则进行剪枝。
具体操作:
1.如果存在任一子集是一棵树,则在该子集递归剪枝过程
2.计算不合并的误差
3.如果合并会降低误差的话,就将叶节点合并
在回归树一般用总方差计算误差(即用叶子节点的值减去所有叶子节点的均值)。
相比于预剪枝,后剪枝的泛化能力更强,但是计算开销会更大。
后剪枝方法: 错误率降低剪枝(Reduced Error Pruning,REP)、悲观剪枝(Pessimistic Error Pruning,PEP)、代价复杂度剪枝(Cost Complexity Pruning,CCP)、最小误差剪枝(Minimum Error Pruning,MEP)、CVP(Critical Value Pruning)、OPP(Optimal Pruning)等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14