
今天小编给大家分享一下最小二乘法的一些内容。
一、最小二乘法概念
最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。主要是通过最小化误差的平方以及最合适数据的匹配函数。
作用:(1)利用最小二乘法可以得到位置数据(这些数据与实际数据之间误差平方和最小)(2)也可以用来曲线拟合
二、最小二乘法的一般提法为:
已知 n 组观测数据(x1.y1),(x2.y2)...........(xn,yn), 可认为它们满足某一模型 y=g(x)+ε(x),其中 y=g(x)是函数 ,ε(x)=y-g(x)是观测值与函数值得误差,称为误差函数。 那么有 yi是观测值,εi=yi-g(xi)是观测误差。 设 g (x)是含有 p 个参数的拟合函数,则 ε(x)=y- g (x),εi=yi- g (xi),要确定 g (x)中 p 个参数的值,就要使得ni = 1Σεi2=ni = 1Σ(yi- g (xi))2达到最小。 这一方法称为最小二乘法。 特别的,假设拟合函数为:
y*=a1φ1(x)+a2φ2(x)+........asφs(x)
其中 φ1(x),φ2(x)............φs(x)为所选定的基函数,ai(i=1.2.....s)为待定系数,要确定系数 ai(i=1.2.....s),使得 y*与 n 组观测数据的距离的平方和尽可能小,也就是取最小值。
三、最小二乘法的适用场景
当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,需要使用LASSO。当m=n时,用方程组求解。当m>n时,拟合方程是超定的,我们可以使用最小二乘法。
四、最小二乘法局限性
首先,最小二乘法需要计算(XTX)−1逆矩阵,有可能逆矩阵不存在,这样就没有办法直接用最小二乘法。
第二,当样本特征n非常的大的时候,计算逆矩阵是一个非常耗时的工作,甚至不可行。建议不超过10000个特征。
第三,如果拟合函数不是线性的,这时无法使用最小二乘法,需要通过一些技巧转化为线性才能使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15