自然语言处理工作中,在自动建构关键词(非控制字汇)时,经常采用的方法是? A. Controlled Vocabulary(控制字汇) B. Inversion of Terms(逐项反转 ) C. Inverse Document Frequency (IDF) D. Full-Text ...
2024-09-05财务报表数据分析是企业管理中至关重要的一环。通过对报表中的各项数据进行深入分析,管理者可以清晰了解企业的财务健康状况,从而为未来的战略决策提供可靠的依据。作为一个数据分析从业者,我经常对这些分析方法 ...
2024-09-05近日,河南理工大学应急管理学院成功举办了一场题为“数字化转型:趋势、挑战与机遇”的高端讲座,特邀CDA数字化人才认证的创始发起人兼协会理事长赵坚毅博士作为主讲嘉宾。本次学术交流活动,旨在深化学生对当 ...
2024-09-04贝叶斯数据分析,如同一位经验丰富的导游,带领我们在复杂数据的世界中游走,通过结合已有的先验知识与新观测数据,不断调整和优化我们的预测与推断。贝叶斯定理是这一切的核心,它为我们提供了一个动态调整信 ...
2024-09-04作为一名数据分析的老手,我时常会被问到:“Stata这个工具怎么学?”其实,Stata的学习并不复杂,尤其是当你有一条清晰的学习路径和一些经典案例作为指引时。今天,我想借助自己多年来的经验,结合一些真实案 ...
2024-09-04词袋模型(英语:Bag-of-words model)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(Bag of Word, BoW)的说法正确的是? A. 将所有词语装进一个袋子里,不考虑其词法和语序的问题,即 ...
2024-09-04关于词嵌入模型,以下说法错误的是? A. GloVe模型属于词嵌入模型 B. Word2Vec模型属于词嵌入模型 C. 词袋模型属于词嵌入模型 D. 词嵌入模型基本假设是出现在相似的上下文中的词含义相似 数据分析认证考试 ...
2024-09-04Word2vec,是一群用来产生词向量的相关模型,用来训练以重新建构语言学之词文本。Word2Vec包含哪两种模型? A. CBOW模型和Skip-Gram模型 B. Bag-of-Words和GloVe模型 C. LSA模型和CBOW模型 D. GloVe模型和CB ...
2024-09-04在一线大厂中,数据分析员的角色往往被赋予了极高的责任感与重要性。他们不仅是数据的操作者,更是业务决策的重要推动者。数据分析员的日常工作极为丰富,从数据的收集、清洗,到深入的分析和报告生成,每一个环节都 ...
2024-09-04在这个瞬息万变的数字时代,电商行业如潮水般蓬勃发展,而在这股浪潮中,电商数据分析师扮演着极其重要的角色。作为一名数据分析专家,我深知这个岗位不仅仅是“看数据”,而是通过数据的背后寻找商机,为企业决策 ...
2024-09-04在数据时代,企业的每一笔交易、每一个决策都离不开数据的支撑。而要高效管理和利用这些数据,数据仓库就显得尤为重要。作为一名长期从事数据分析的从业者,我深知数据仓库对企业决策的重大影响,今天就来跟大家聊 ...
2024-09-04随着2024年的到来,数据科学家这个职业不仅在全球范围内保持着高需求,薪资待遇也呈现出令人瞩目的增长趋势。作为一个多年扎根于数据领域的从业者,我深感这个职业的魅力和挑战。本文将从职业发展前景、薪资分析、行 ...
2024-09-04CDA考试介绍 CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的技能认证,旨在提升数字化人才的数据技能,助力企业数字化转型,推动行业数字化发展。 ...
2024-09-04大数据分析,这个领域已经成为现代商业和技术的核心。然而,对于初学者来说,这个过程可能显得复杂而神秘。其实,大数据分析的过程可以分为几个基本步骤,每个步骤都至关重要。今天,我想从一个有经验的视角,分享如 ...
2024-09-03数据分析,这个词汇看似简单,但却承载着巨大的意义。作为一名在数据分析领域工作多年的从业者,我深知它的重要性和广泛应用。数据分析不仅仅是对数据进行整理和计算,更是通过深度挖掘数据背后隐藏的价值,帮助企 ...
2024-09-03在如今这个数据爆炸的时代,大数据分析成为了一种推动社会进步和商业创新的重要工具。作为一名在数据分析领域深耕多年的从业者,我见证了大数据从初出茅庐到如今无处不在的蜕变。大数据分析不仅仅是对海量信息的处 ...
2024-09-03数据分析,特别是使用SPSS进行数据分析,一直是我热衷且擅长的领域。作为一名数据分析领域的从业者,看到许多新人在学习SPSS时感到困惑,内心总会涌起一种责任感,希望通过分享自己的经验帮助他们更好地掌握这项技 ...
2024-09-03数据分析与数据可视化是现代数据科学中的两个核心要素,它们密不可分,相互依存。作为一名数据分析领域的从业者,我时常在工作中感受到这两者的共生关系。数据分析的本质是从海量信息中提炼出有价值的洞察, ...
2024-09-03关于Skip-Gram模型,以下说法正确的是? A. 属于词袋模型的一种 B. 模型的目标是最大化用当前的词预测上下文的词的生成概率 C. 模型的目标是最大化通过上下文的词预测当前词生成概率 D. 属于词集模 ...
2024-09-03Skip-Gram模型的基础形式非常简单,为了更清楚地解释模型,我们先从最一般的基础模型来看Word2Vec。Skip-Gram模型不包含以下哪一项? A. 输入层 B. 池化层 C. 输出层 D. 隐藏层 数据分析认证考试介 ...
2024-09-03在数据仓库设计中,维度表和事实表是至关重要的数据结构。它们各自承载不同的角色和数据类型,为我们提供了丰富的信息内容。让我 ...
2024-12-06数据分析是市场营销领域中不可或缺的工具,而无序多分类logistic回归作为一种重要的建模技术,为我们提供了深入洞察各种市场营销 ...
2024-12-06在数据分析领域,了解先验概率和后验概率以及它们的影响因素至关重要。让我们通过一些实际例子和个人见解来深入探讨这些概念,同 ...
2024-12-06在推荐系统中,协同过滤算法扮演着关键角色,其核心任务是从用户和物品的行为数据中提取有效特征,以实现个性化推荐。让我们深入 ...
2024-12-06数据分析的世界充满了千变万化,而学会泛化能力是每位数据分析师追求的终极目标。在推荐系统中,协同过滤算法的特征提取起着至关 ...
2024-12-06异常值在数据分析和机器学习中起着至关重要的作用。它们可能源自测量错误、数据损坏,或者代表真实但罕见的事件。这种数据的存在 ...
2024-12-06随机森林,作为一种强大的机器学习算法,广泛应用于数据分析和预测建模中。要充分发挥随机森林模型的潜力,我们需要深入了解如何 ...
2024-12-06在当今数据驱动的世界中,处理大数据变得至关重要。Hadoop作为一个强大的工具,在处理海量数据方面表现突出。本文将带您深入了解 ...
2024-12-06正态分布,作为统计学中至关重要的概率分布之一,承载着许多关键特征和应用。从对称性到中心极限定理,这些特性赋予了正态分布在 ...
2024-12-06在当今信息爆炸的时代,处理大规模数据集变得至关重要。Hadoop作为一个开源的分布式计算框架,在大数据处理领域发挥着重要作用。 ...
2024-12-06在处理多分类问题时,无序多分类Logistic回归是一种强大的统计方法,特别适用于具有多个无序类别的情况。通过以下Python示例,我 ...
2024-12-06在现代机器学习领域,迁移学习发挥着重要作用。尤其是卷积神经网络(CNN)和循环神经网络(RNN)在图像处理、自然语言处理等任务 ...
2024-12-06在数据分析中,保证研究结果的可靠性至关重要。SPSS提供了多种稳健性检验方法,用于验证模型的鲁棒性和有效性。这些方法涵盖了从 ...
2024-12-06在进行SPSS中的单因素方差分析时,确保各组间方差齐性至关重要。方差齐性检验评估不同组别下总体方差是否相等,是分析的前提条件 ...
2024-12-06数据分析中,非参数检验方法提供了一种强大工具,可在不依赖于特定总体分布的情况下进行统计推断。这些方法适用于各种领域,包括 ...
2024-12-06大数据正以多方面方式深刻影响着企业的决策过程,不仅改变了决策手段,更提升了效率和准确性。让我们深入探讨大数据在企业决策中 ...
2024-12-06在大数据生命周期中,数据清洗和转换是至关重要的步骤,对于确保数据质量和可用性起着关键作用。这两个阶段相辅相成,为数据分析 ...
2024-12-06数据清洗和转换在大数据生命周期中扮演着关键角色,确保数据质量和可用性。数据清洗涉及识别和处理数据中的错误、缺失值和重复值 ...
2024-12-06单因素方差分析(One-way ANOVA)是一种统计方法,用于检验多个组之间均值是否存在显著差异。在这个过程中,假设检验起着核心作 ...
2024-12-06对比RNN和CNN的性能 在探讨卷积神经网络(Convolutional Neural Networks,CNN)和循环神经网络(Recurrent Neural Networks,RN ...
2024-12-06