Apache Hadoop是存储和处理大数据的开源软件框架 Hadoop项目
Hadoop能够在上千台机器组成的集群上运行大规模集群的可靠性,不能仅仅靠硬件来保证,因为节点的失败、网络的失败等状况不可避免,为了能够在大规模集群上顺利运行,Hadoop的所有模块,其设计原则基于这样的基本假设,即**硬件的失败在所难免,每个节点都没有那么可靠,可能发生节点失败状况,软件框架应该能够自动检测和处理这些失败情况。 Hadoop通过软件,在大规模集群上提供高度的可用性(High Availability)
Hive是Hadoop平台上的数据仓库,用于对数据进行离线分析。它提供了一种类 似于SQL的查询语言HQL (Hive Query Language)。Hive将SQL转化为 MapReduce作业(Job)在Hadoop上执行。
HBase是Google Big Table在Hadoop平台上的开源实现。它是一个针对结构化数 据处理的、面向列分组(Column Family)的、可伸缩的、高度可靠的、高性能的分 布式数据库。一般用于数据服务(Data Serving)应用场合。
Pig实现了数据查询脚本语言Pig Latin。用Pig Latin脚本语言编写的应用程序,翻 译为MapReduce作业,在Hadoop上运行
Flume是一个可扩展的、高度可靠的、高可用的分布式海量日志收集系统,一般 用于把众多服务器上的大量日志,聚合到某一个数据中心。Flume提供对日志数 据进行简单处理的能力,比如过滤、格式转换等。同时,Flume可以将日志写往 各种目标(本地文件、分布式文件系统)。
Mahout是Hadoop平台上的机器学习软件包,它的主要目标是实现高度可扩展的 机器学习算法,以便帮助开发人员利用大数据进行机器学习模型训练。Mahout现 在已经包含聚类、分类、推荐引擎(协同过滤)、频繁集挖掘等经典数据挖掘和机 器学习算法。
Oozie是一个工作流调度器(Scheduler)。Oozie协调运行的作业,属于一次性非 循环的作业,比如MapReduce作业、Pig脚本、Hive查询、Sqoop数据导入/导出 作业等。Oozie基于时间、和数据可用性进行作业调度,根据作业间的依赖关 系,协调作业的运行
Zookeeper是模仿Google公司的Chubby系统的开源实现,Chubby是一个分布式 的锁(Lock)服务
原理:
读文件
在大数据处理的领域中,Hadoop 可谓是一位 “重量级选手”。然而,就像任何技术一样,Hadoop 1.0 也有它的不足之处。
Hadoop 1.0 存在着明显的单点故障问题。这就好比一个团队中,如果关键人物出了问题,整个团队的运作可能就会陷入混乱。在 Hadoop 1.0 中,一旦 NameNode 这个关键节点出现故障,整个系统就可能面临崩溃的风险。
而且,它的资源管理方式也不够灵活。就好像分配房间,如果只有一种固定的分配方式,很难满足各种不同的需求。
不过,技术总是在不断进步的。Hadoop 2.0(YARN)的出现,给我们带来了新的希望。
YARN 的原理就像是一个更聪明的 “管家”。它把资源管理和任务调度分开了。ResourceManager 就像是大管家,负责整体资源的分配和监控。而 ApplicationMaster 则像是每个任务的小管家,专门负责自己任务的资源申请和调度。
这种分离的方式,让系统的扩展性大大增强。就好比原来的房子不够住了,现在可以很方便地加盖新的房间,而不会影响原来的居住者。
同时,容错性也得到了提高。即使某个 “小管家” 出了问题,也不会让整个 “家” 乱了套。
资源利用率也因为这种更精细的管理而得到了提升,不再有资源浪费或者分配不均的情况。
YARN(Yet Another Resource Negotiator)
总的来说,Hadoop 2.0(YARN)的出现,解决了 Hadoop 1.0 的很多痛点,让大数据处理变得更加高效、可靠和灵活。相信在未来,它还会不断进化,为我们处理大数据带来更多的便利和惊喜!
ResourceManager的主要功能,是资源的调度工作。所以它能够轻松地 管理更大规模的集群系统,适应了数据量增长对数据中心的扩展性提出的挑战。
ResourceManager是一个单纯的资源管理器,它根据资源 预留要求、公平性、服务水平协议(Service Level Agreement, SLA)等标准,优化 整个集群的资源,使之得到很好的利用。
在Hadoop1.0平台上开发的 MapReduce应用程序,无需修 改,直接在YARN上运行。
当数据存储到HDFS以后,用户希望能够对数据以不同的 方式进行处理。除了MapReduce应用程序(主要对数据进行批处理),YARN支持 更多的编程模型,包括图数据的处理、迭代式计算模型、实时流数据处理、交互 式查询等。一般来讲,机器学习算法需要在数据集上,经过多次迭代,才能获得 最终的计算结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02