在深度学习模型训练过程中,往往需要处理大量的数据和参数,进而需要较大的计算资源支持。然而,单张显卡的显存有限,当模型过于复杂或者数据集过于庞大时,会导致无法将整个模型同时加载到显存中进行训练。为了充 ...
2023-04-07TensorFlow 1.x版本是Google发布的第一个深度学习框架,它在2015年推出后,迅速成为了业界最受欢迎的深度学习框架之一。然而,TensorFlow 1.x版本也存在一些弊端,这些弊端在TensorFlow 2.0和PyTorch等新一代深度学 ...
2023-04-07Linux Namespace 是 Linux 操作系统中的一种隔离机制,可以用来创建独立的用户空间,使得不同进程之间的资源隔离和沙箱化成为可能。在一个 Namespace 中,进程可以看到自己所处的环境,但是不能访问其它 Namespace ...
2023-04-07MySQL的中间隙锁是指在使用索引进行范围查询时,对于被查询的索引键范围之外的“空隙”部分也会被加锁,以避免幻读的问题。 幻读(Phantom Read)是指在一个事务中多次执行同样的查询语句,但是每次查询结果都不同, ...
2023-04-07在神经网络的训练过程中,我们通常会把数据集划分为训练集和验证集。训练集用于训练模型,而验证集则用于评估模型的性能。在实际操作中,有时候我们会遇到训练集和验证集的损失(loss)、准确率(acc)差别过大的情况 ...
2023-04-07在PyTorch中,计算矩阵的相关系数矩阵可以使用torch.corrcoef()函数。该函数接受一个张量作为输入,返回该张量的行之间的相关系数矩阵。如果输入张量是二维的,则计算其中每一列之间的相关系数矩阵。下面我们将详 ...
2023-04-07神经网络训练是一种基于反向传播算法的优化过程,旨在通过调整模型参数来最小化损失函数的值,从而使得模型能够更好地拟合训练数据并具备良好的泛化性能。在这个过程中,我们通常会关注训练过程中的损失函数值(或 ...
2023-04-07在进行SPSS(统计软件)相关性分析时,显著性水平(p值)通常用于评估两个变量之间的关系是否显著。简单来说,p值越小表示两个变量之间的关系越显著。 通常情况下,我们使用0.05作为显著性水平的阈值。这意味着 ...
2023-04-07深度学习卷积神经网络(CNN)是一种强大的机器学习算法,已经被广泛应用于计算机视觉、语音识别和自然语言处理等领域。CNN在图像分类和目标检测等任务中表现出色,其中最重要的原因就是其能够从原始像素数据中提取出高 ...
2023-04-07随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多 ...
2023-04-07MySQL是一个广泛使用的关系型数据库管理系统,其日志功能对于数据库的运维和管理至关重要。MySQL中有多种类型的日志文件,分别记录了数据库的各种操作和事件,包括二进制日志、错误日志、查询日志、慢查询日志和事务 ...
2023-04-07在神经网络中,难样本和噪音样本是两个重要的概念,它们在模型训练和预测过程中起着不同的作用。 首先,噪音样本是指在数据集中存在的不符合真实分布的异常、异常值或错误标注的数据样本。这些样本可能会对模型的性 ...
2023-04-07Python是一种优秀的编程语言,专门用于数据分析和可视化。其中,matplotlib是Python中最流行的数据可视化库之一。它提供了丰富的绘图功能,并可以轻松自定义图表的各个方面,包括x和y轴的长度。 在本文中,我们 ...
2023-04-07Hadoop、Spark、Storm与Flink是四种流行的大数据处理框架。它们都可以用于处理海量数据和实现分布式计算,但在细节上有所不同。本文将对这四个框架进行比较,并探讨它们适用的不同场景。 Hadoop Hadoop是一 ...
2023-04-07在深度学习网络框架中,确定神经元数量是一个重要的设计决策。神经元数量越多,模型的能力和复杂度就越高,但同时也会增加计算和存储资源的需求,可能导致过拟合等问题。因此,正确地确定神经元数量对于设计高效和准 ...
2023-04-07神经网络反向传播算法(Backpropagation)是一种用于训练神经网络的算法,其本质是通过最小化损失函数来寻找权重和偏置参数的最优值。在深度学习中,尤其是在计算机视觉、自然语言处理和语音识别等领域中,神经网络 ...
2023-04-07在过去的几年中,深度学习领域取得了显著的发展。为了更好地利用硬件资源来训练复杂的深度神经网络,大量的工作已经被投入到并行化训练算法和框架的研究中。然而,一些GPU在使用PyTorch等库时可能会遇到无法有效并行 ...
2023-04-07当我们训练机器学习模型时,我们通常会将数据集划分为训练集和验证集。训练集用来训练模型参数,而验证集则用于评估模型的性能和泛化能力。在训练过程中,我们经常会观察到训练集的准确率持续提高,但是验证集的准 ...
2023-04-07ActiveMQ和Kafka都是常用的开源消息队列软件,它们在设计上有许多不同之处。在本文中,我将介绍这两种消息队列系统的区别,并探讨它们各自的优点和缺点。 ActiveMQ是一种基于JMS(Java Message Service)规范的消息 ...
2023-04-07MySQL是一种常用的关系型数据库管理系统,它通过索引来提高数据检索效率。索引是在表中创建的数据结构,可以快速查找表中特定值的位置,从而加速查询操作。在MySQL中,有两种主要的索引类型:单列索引和联合索引。 ...
2023-04-07数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22