京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大量研究结果表明人类通过图形获取信息的速度比通过阅读文字获取信息的速度要快很多,那么将数字以可视化的形式展示出来还有其它什么好处,本文详细列举了7种优势。以下为译文。
数据可视化是指以饼状图等图形的方式展示数据。这帮助用户能够更快地识别模式。交互式可视化能够让决策者深入了解细节层次。这种展示方式的改变使得用户可以查看分析背后的事实。
以下是数据可视化影响企业做决策和战略调整的七种方式。
人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的电子表格更快。
这提供了一种非常清晰的沟通方式,使业务领导者能够更快地理解和处理他们的信息。大数据可视化工具可以提供实时信息,使利益相关者更容易对整个企业进行评估。对市场变化更快的调整和对新机会的快速识别是每个行业的竞争优势。
向高级管理人员提交的许多业务报告都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。
然而,来自大数据可视化工具的报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fever charts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。
大数据可视化的一个好处是,它允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。
例如,一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降了8%。然后,主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动。
现在已经收集到的消费者行为的数据量可以为适应性强的公司带来许多新的机遇。然而,这需要他们不断地收集和分析这些信息。通过使用大数据可视化来监控关键指标,企业领导人可以更容易发现各种大数据集的市场变化和趋势。
数据可视化的主要好处是它及时带来了风险变化。但与静态图表不同,交互式数据可视化鼓励用户探索甚至操纵数据,以发现其他因素。这就为使用分析提供了更好的意见。
例如,大型数据可视化工具可以向船只制造商展示其大型工艺的销售下降。这可能是由于一系列原因造成的。但团队成员积极探索相关问题,并将其与实际的船销售联系起来,可以找出根源,并找到减少其影响的方法,以推动更多的销售。
大数据可视化的一个优点是它提供了一种现成的方法来从数据中讲述故事。热图可以在多个地理区域显示产品性能的发展,使用户更容易看到性能良好或表现不佳的产品。这使得高管们可以深入到特定的地点,看看哪些地方做得好,哪些做得不好。
他们可能会认识到,瞄准较高收入市场的细分市场并不会销售价格更高的产品,或者传统的清洁产品销售比环保绿色产品更不受欢迎。这些见解可以被用来集思广益,头脑风暴,以支持更高的销售。
大数据可视化工具提供了一种更有效的使用操作型数据的方法。对于更大多数的商业领袖来说,实时性能和市场指标的变化更容易识别和应对。
围绕机器学习的所有炒作都快将变成现实了。除了一些大公司,比如亚马逊、谷歌正在利用机器学习来消除垃圾邮件,Pinterest利用机器学习向用户展示相关内容,Yelp使用机器学习来整理用户上传的照片。甚至是Disqus这样的公司也在使用机器学习来清除垃圾信息。现在就准备开始将机器学习应用到你自己的或者客户的业务领域里面去吧。
Home Depot使用机器学习来帮助用户更快地找到产品,甚至像Lyst这样的小公司也使用机器学习来帮助客户找到任意一种查询的相关信息。
客户服务正被机器学习的能力所改变,它能够解释客户的电子邮件,并将其分类,以纠正公司内部的部门或区域。这也就意味着以后可能再也用不到电话沟通的方式了。
机器学习的未来是无限的。
1.动作更快
2.以建设性方式讨论结果
3.理解运营和结果之间的连接
4.接受新兴趋势
5.与数据交互
6.创建新的讨论
7.机器学习:来吧,来吧
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29