
大量研究结果表明人类通过图形获取信息的速度比通过阅读文字获取信息的速度要快很多,那么将数字以可视化的形式展示出来还有其它什么好处,本文详细列举了7种优势。以下为译文。
数据可视化是指以饼状图等图形的方式展示数据。这帮助用户能够更快地识别模式。交互式可视化能够让决策者深入了解细节层次。这种展示方式的改变使得用户可以查看分析背后的事实。
以下是数据可视化影响企业做决策和战略调整的七种方式。
人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的电子表格更快。
这提供了一种非常清晰的沟通方式,使业务领导者能够更快地理解和处理他们的信息。大数据可视化工具可以提供实时信息,使利益相关者更容易对整个企业进行评估。对市场变化更快的调整和对新机会的快速识别是每个行业的竞争优势。
向高级管理人员提交的许多业务报告都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。
然而,来自大数据可视化工具的报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fever charts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。
大数据可视化的一个好处是,它允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。
例如,一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降了8%。然后,主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动。
现在已经收集到的消费者行为的数据量可以为适应性强的公司带来许多新的机遇。然而,这需要他们不断地收集和分析这些信息。通过使用大数据可视化来监控关键指标,企业领导人可以更容易发现各种大数据集的市场变化和趋势。
数据可视化的主要好处是它及时带来了风险变化。但与静态图表不同,交互式数据可视化鼓励用户探索甚至操纵数据,以发现其他因素。这就为使用分析提供了更好的意见。
例如,大型数据可视化工具可以向船只制造商展示其大型工艺的销售下降。这可能是由于一系列原因造成的。但团队成员积极探索相关问题,并将其与实际的船销售联系起来,可以找出根源,并找到减少其影响的方法,以推动更多的销售。
大数据可视化的一个优点是它提供了一种现成的方法来从数据中讲述故事。热图可以在多个地理区域显示产品性能的发展,使用户更容易看到性能良好或表现不佳的产品。这使得高管们可以深入到特定的地点,看看哪些地方做得好,哪些做得不好。
他们可能会认识到,瞄准较高收入市场的细分市场并不会销售价格更高的产品,或者传统的清洁产品销售比环保绿色产品更不受欢迎。这些见解可以被用来集思广益,头脑风暴,以支持更高的销售。
大数据可视化工具提供了一种更有效的使用操作型数据的方法。对于更大多数的商业领袖来说,实时性能和市场指标的变化更容易识别和应对。
围绕机器学习的所有炒作都快将变成现实了。除了一些大公司,比如亚马逊、谷歌正在利用机器学习来消除垃圾邮件,Pinterest利用机器学习向用户展示相关内容,Yelp使用机器学习来整理用户上传的照片。甚至是Disqus这样的公司也在使用机器学习来清除垃圾信息。现在就准备开始将机器学习应用到你自己的或者客户的业务领域里面去吧。
Home Depot使用机器学习来帮助用户更快地找到产品,甚至像Lyst这样的小公司也使用机器学习来帮助客户找到任意一种查询的相关信息。
客户服务正被机器学习的能力所改变,它能够解释客户的电子邮件,并将其分类,以纠正公司内部的部门或区域。这也就意味着以后可能再也用不到电话沟通的方式了。
机器学习的未来是无限的。
1.动作更快
2.以建设性方式讨论结果
3.理解运营和结果之间的连接
4.接受新兴趋势
5.与数据交互
6.创建新的讨论
7.机器学习:来吧,来吧
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07