
大量研究结果表明人类通过图形获取信息的速度比通过阅读文字获取信息的速度要快很多,那么将数字以可视化的形式展示出来还有其它什么好处,本文详细列举了7种优势。以下为译文。
数据可视化是指以饼状图等图形的方式展示数据。这帮助用户能够更快地识别模式。交互式可视化能够让决策者深入了解细节层次。这种展示方式的改变使得用户可以查看分析背后的事实。
以下是数据可视化影响企业做决策和战略调整的七种方式。
人脑对视觉信息的处理要比书面信息容易得多。使用图表来总结复杂的数据,可以确保对关系的理解要比那些混乱的电子表格更快。
这提供了一种非常清晰的沟通方式,使业务领导者能够更快地理解和处理他们的信息。大数据可视化工具可以提供实时信息,使利益相关者更容易对整个企业进行评估。对市场变化更快的调整和对新机会的快速识别是每个行业的竞争优势。
向高级管理人员提交的许多业务报告都是规范化的文档,这些文档经常被静态表格和各种图表类型所夸大。也正是因为它制作的太过于详细了,以致于那些高管人员也没办法记住这些内容,因此对于他们来说是不需要看到太详细的信息。
然而,来自大数据可视化工具的报告使我们能够用一些简短的图形就能体现那些复杂信息,甚至单个图形也能做到。决策者可以通过交互元素以及类似于热图、fever charts等新的可视化工具,轻松地解释各种不同的数据源。丰富但有意义的图形有助于让忙碌的主管和业务伙伴了解问题和未决的计划。
大数据可视化的一个好处是,它允许用户去跟踪运营和整体业务性能之间的连接。在竞争环境中,找到业务功能和市场性能之间的相关性是至关重要的。
例如,一家软件公司的执行销售总监可能会立即在条形图中看到,他们的旗舰产品在西南地区的销售额下降了8%。然后,主管可以深入了解这些差异发生在哪里,并开始制定计划。通过这种方式,数据可视化可以让管理人员立即发现问题并采取行动。
现在已经收集到的消费者行为的数据量可以为适应性强的公司带来许多新的机遇。然而,这需要他们不断地收集和分析这些信息。通过使用大数据可视化来监控关键指标,企业领导人可以更容易发现各种大数据集的市场变化和趋势。
数据可视化的主要好处是它及时带来了风险变化。但与静态图表不同,交互式数据可视化鼓励用户探索甚至操纵数据,以发现其他因素。这就为使用分析提供了更好的意见。
例如,大型数据可视化工具可以向船只制造商展示其大型工艺的销售下降。这可能是由于一系列原因造成的。但团队成员积极探索相关问题,并将其与实际的船销售联系起来,可以找出根源,并找到减少其影响的方法,以推动更多的销售。
大数据可视化的一个优点是它提供了一种现成的方法来从数据中讲述故事。热图可以在多个地理区域显示产品性能的发展,使用户更容易看到性能良好或表现不佳的产品。这使得高管们可以深入到特定的地点,看看哪些地方做得好,哪些做得不好。
他们可能会认识到,瞄准较高收入市场的细分市场并不会销售价格更高的产品,或者传统的清洁产品销售比环保绿色产品更不受欢迎。这些见解可以被用来集思广益,头脑风暴,以支持更高的销售。
大数据可视化工具提供了一种更有效的使用操作型数据的方法。对于更大多数的商业领袖来说,实时性能和市场指标的变化更容易识别和应对。
围绕机器学习的所有炒作都快将变成现实了。除了一些大公司,比如亚马逊、谷歌正在利用机器学习来消除垃圾邮件,Pinterest利用机器学习向用户展示相关内容,Yelp使用机器学习来整理用户上传的照片。甚至是Disqus这样的公司也在使用机器学习来清除垃圾信息。现在就准备开始将机器学习应用到你自己的或者客户的业务领域里面去吧。
Home Depot使用机器学习来帮助用户更快地找到产品,甚至像Lyst这样的小公司也使用机器学习来帮助客户找到任意一种查询的相关信息。
客户服务正被机器学习的能力所改变,它能够解释客户的电子邮件,并将其分类,以纠正公司内部的部门或区域。这也就意味着以后可能再也用不到电话沟通的方式了。
机器学习的未来是无限的。
1.动作更快
2.以建设性方式讨论结果
3.理解运营和结果之间的连接
4.接受新兴趋势
5.与数据交互
6.创建新的讨论
7.机器学习:来吧,来吧
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10