京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在大数据时代,最不缺伐的就是峰值流量的出现。一旦出现降价、打折或者平台周年庆,当日的峰值流量将可能刷新平台服务器承载上限,而这也意味着多种压力共同提升,其中最容易被忽视的一部分在于数据。因为当天数据量会爆炸,如果不及时处理,这些数据的核心价值将会随之而降低。

流量峰值带来数据爆炸
从去年的数据来看,我国电商业务的交易额达到了22.97万亿元,同比增长25.5%。这种增长率也意味着数据量飙升,从服务器、网络、物流、售后和品控等多个方面的数据都会产生压力。
服务器与网络的数据压力将首当其冲。每次活动前夕,程序员几乎都要彻夜难眠,有时需要靠”玄学”祈祷才能帮助服务器度过难关。即便云服务器准备再充分,扩容再强,也很难保证千军万马同一秒冲入活动界面时不会出问题。
商业促销是各种数据的爆炸点
相应的,商业促销也会带动物流方面的数据的爆炸。去年我国快递企业营收为4005亿元,同比2015年增长44.6%。如此大量的订单不仅存在的交通、工作人员等方面的难题,还有物流信息的处理、同步和管理等大量的难题。
品控和售后是对平台品牌的保障,如果这两步出了问题,那么平台就会面临口碑下滑,甚至活动起到相反的效果。而在活动期间,进行品控和售后都绝非简单,这些数据的产生和消化都在考验着工作人员和官方平台的协调能力。
数据资源面临时间考验
在这些方面产生的大量数据之后,把活动期间产生的大数据简单的统计然后丢弃显然是一种资源浪费。想让这些数据资源实现价值,在存储、处理和分析等方面都存在不小的难题。
第一,活动期间,企业将全面面临人手不足的问题。因此程序员、运维人员和系统管理人员常常顾此失彼,数据处理和分析人员又不能招收临时工应急,反还会被外借到其他部门去做紧急处理,从而让大量的活动峰值数据面临搁置危机。
第二,活动期间是一个数据爆发点,这些数据具有大流量、高并发和急需求等多种特点。原本慢条斯理的数据处理工作面临转瞬即逝的问题,简单来讲这就像把一个月的工作堆积到一天去完成,数据处理难上加难。
第三,数据处理等不得。事实上,所有的大数据都具有等不得的特点,数据的价值保质期仅有三个月,而以一些时效性较强的商业数据迭代速度更快,如果得不到处理,那么消耗大量资源存储的商业数据自身价值就会急速下滑,对企业的指导作用都会相应的下降。
数据处理要成本把控
平台开展促销活动不仅仅是为用户着想,也是对自身负载上限的一次考验。在未来几年中,我国的物流行业将会进入日均1亿快件的节奏,这就意味着订单量会爆发性增加,物流频次加速,数据量继续上升,数据处理的提速和降耗将会变成急需解决的问题。
数据处理提速目前提倡的是流式大数据处理,流式处理的优势在于借助开源的分布式系统,运行数据流代码时,分配数据到容错力高的计算机中并行运行,从而达到低延迟、可扩展和容错率高的目的。但这种处理方式最大的限制在于成本过高,尤其是对于超大量数据应用流式数据处理会让平台得不偿失,以此处理所得的数据价值未必比成本更高。
数据处理降耗则是指降低在数据处理过程中的人力和财力消耗。在促销活动期间,用人紧张导致人力资源价值提升,这就需要在数据价值和人力价值之间寻找平衡点;同时无法处理的数据在存储和管理方面的成本也需要纳入考虑范围。
解决数据问题需要从多个层面来考虑:人力方面,数据价值是不可忽视的一部分,专业人从事专业事,让人的价值最大化发挥;技术层面,将人工智能的深度学习和机器学习技术深化与大数据技术的结合,让人在大数据处理流程中只指挥,不执行,把计算力还给云和HPC;数据层面,强化数据分流,将时效性明显的数据优先处理,并且有选择的进行数据清洗,降低存储和管理成本,提高处理效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11