
SPSS分析技术:单因素方差分析结果的模型解读
SPSS的方差分析过程就是以方差分析模型的形式进行计算和结果输出的。下面我们将以单因素方差分析为例,介绍单因素方差分析结果的模型函数解读。帮助大家充分理解方差分析的深层模型含义。首先回顾方差分析的常用步骤:
1、方差齐性检验;
2、计算各项平方和与自由度;
3、列出方差分析表,进行F检验,并依据F值对应的p值做出判断;
4、事后多重比较;
为了便于理解,先回顾单因素方差分析模型。假设因素为职业;因变量为工资收入,那么单因素方差分析模型可以表示为:
案例分析
我们直接用SPSS进行单因素方差分析,并对结果进行模型解读。某汽车4S店希望比较4个品牌轮胎的耐磨性,分别从4个品牌的轮胎中抽取了5个样品,在相同的转速下磨损相同时间,测量其被磨损的深度(mm),数据如下图所示:
操作步骤
1、选择菜单【分析】-【一般线性模型】-【单变量】。如下图所示,在跳出的对话框中,将磨损深度选为因变量,将轮胎品牌选为固定因子。点击【事后多重检验】按钮,在跳出的对话框中,将轮胎品牌选入事后检验的框内,表示要对不同品牌的轮胎磨损程度进行两两比较,确定磨损程度的高低。在假定方差齐性区域选择LSD和S-N-K作为事后多重检验的检验方式。
2、点击【选项】按钮;将轮胎品牌选入显示平均值框;在输出区域选择描述统计、同质性检验、参数估计和对比系数矩阵。
3、点击确定,输出结果。
结果的模型解读
1、描述性统计结果;
上表是4组数据的描述性统计结果,它给出了样本均数和标准差。从标准差可知除D品牌较小外,其余三组标准差非常接近,至于有无方差不齐的问题需要看随后的齐性检验结果。
上表是方差齐性检验结果,用来检验4组样本的方差是否存在显著性差异。从结果可知,Levene方差齐性检验的F统计量为1. 292,在当前自由度下对应的P值为0. 311,可以认为4组样本所代表总体的方差齐。
2、方差分析表
第一行“修正的模型”进行的是整个方差分析模型的检验,其原假设为:模型中所有的因素均对因变量无影响,所有的因素系数均等于0。F值为24.550,P<0. 001,因此所用的模型有统计学意义,其中有的因素系数不等于0。由于当前方差分析模型中只有轮胎品牌这一个因素,因此该结论等于说不同品牌轮胎的磨损有差异。
第二行是截距,其原假设为u=0(回顾上方方差分析模型),即不考虑品牌时,所有轮胎的平均磨损深度等于0,显然检验结果拒绝了该假设,但由于截距在这里没有实际意义,可以忽略。
第三行开始对模型中各因素进行检验,由于本模型中只有一个因素,因此只能见到对因素轮胎品牌的检验,其原假设为:轮胎品牌这一因素均对轮胎磨损深度没有影响,因素系数等于0(回顾方差分析模型)。检验F值和P值均与第一行的检验结果相同,结论也完全等价。
3、模型参数的估计
上表是模型各参数的估计值,截距就是总的平均磨损深度,估计值为2.572,表示不考虑品牌时,轮胎的平均磨损深度为2.572mm。从第二行开始就是对各品牌参数的估计,四个轮胎品牌对应4个参数,由于这些参数之间存在数量上的关联,必须要加上一定的限制条件才能进行估计,在本例中,模型默认将编号取值最高的品牌D作为参照水平,这相当于强迫a4=0,另外三个品牌参数的估计值和检验结果实际上就等于该品牌和品牌D相比的结果,例如,品牌A的参数等于A组均值减去D组均值2.41-2.572=- 0.162。可见A,B,C的参数均小于0且有统计学意义,即它们的磨损深度均小于品牌D。
4、LSD事后多重检验;也称为两两比较;
LSD法的输出结果实际上是要求将各组均值和一个参照组进行比较。SPSS假设每一个轮胎品牌都有可能成为参照,让其他组都和该参照组进行比较。表中给出了两个轮胎组之间的平均值差异、差值的标准误,95%置信区间以及检验的P值。I表示参照组,J表示对比组。检验结果显示轮胎品牌C和D都与另外三个轮胎品牌有差异,而轮胎品牌A和B之间没有差异。
5、S-N-K事后多重检验;
LSD法的分析结果并不太容易阅读,相对而言,SNK法的两两比较结果则要清楚得多。首先SNK会将各组按照平均值大小排序,上表是按照CBAD的顺序进行排序;随后,表格将四个轮胎品牌分成3个子集,同一子集内的两组平均值两两无差别。第一子集仅由品牌C组成,是磨损深度最低的子集;第二子集由品牌B和A组成,磨损深度居中;第三子集由品牌D组成,磨损情况最为严重。最后一行给出的是子集内部各品牌进行比较的结果,因第一子集和第四自己都仅有一个品牌,因此其p值等于1,第二子集中品牌B和A比较的P值等于0.926,表示两品牌轮胎的磨损深度没有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30