京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑:
Youtube百万粉丝大V数据分析师Alex Freberg,20分钟讲清楚。

想要成为数据分析师,有些技能必不可少:

必备技能:SQL、Excel、Tableau/Power BI(数据可视化工具)。这些技能是数据分析师日常工作的基础,能帮助你高效处理和展示数据。
进阶技能:Python、AWS/Azure等云平台。虽然学习起来有一定难度,但随着职业发展,它们会为你提供更强大的数据处理和分析能力,且会在不断实践中逐渐熟练掌握。
简历是向HR展示自己的重要窗口,制作时需注意以下几点:

突出优势技能:将自己最擅长的技能在简历中重点呈现,比如如果SQL是你的强项,可在总结、技能、工作经历或作品集中多次提及。
精简内容:去除与数据分析师岗位无关的工作经历和技能。不过,如果过往工作积累了领域专业知识,且与目标岗位所在行业相关,比如医疗行业的数据分析岗位与护士工作背景,就可以保留。
保持专业:确保简历条理清晰、风格简洁,避免使用鲜艳颜色或附上大头照,以展现专业性。
项目能够直观地展示你的能力和工作成果,具体步骤如下:

确定项目数量:准备2-5个项目即可。
项目实施流程:先获取数据集(可从网页爬取,或在Kaggle、Google等平台获取);接着使用Python的pandas库或SQL对数据进行清洗和转换,并将处理后的数据放在SQL中生成视图,展示SQL能力;然后连接数据可视化工具,如Tableau或Power BI,进行可视化操作。
展示方式:将作品集发布在Github上,或建立个人网站,并在简历中附上链接,方便HR查看。
与猎头合作能增加获得面试机会的概率,具体方法如下:

利用LinkedIn:完善LinkedIn资料,表明自己正在寻找数据分析师或初级数据分析师的工作,吸引猎头主动联系你。
主动联系猎头:若不想被动等待,可通过电话或邮件主动联系猎头。建议打电话沟通,让猎头了解你的求职意向,以便在你发送简历后,他们能更好地匹配岗位。
积极合作:与猎头密切合作,借助他们的内部消息和合作渠道,获得更多面试机会。
面试是获得工作的关键一步,需做好以下准备:

技术问题准备:对于初级数据分析师,面试中的技术问题主要围绕SQL;随着经验积累,Python相关问题也会增多。提前复习和练习相关知识,做到心中有数。
常规问题准备:像“我最大的弱点是什么”这类常见问题,提前思考并写好答案,避免在面试中陷入被动。
外在表现:注意着装得体,保持自信。即使紧张,也要在面试过程中尽量展现出自信的态度。
在工作过程中,持续学习和提升技术能力是关键:

编程语言:学习Python或R,提升数据处理和分析的编程能力。
ETL工具:掌握ETL(抽取、转化、加载)技术,如SSIS、Azure Data Factory、AWS Glue等工具,用于高效处理数据。

回到学校进修:攻读与数据分析相关的硕士学位,如计算机科学、信息系统、统计、数据分析、数据科学等专业。这不仅能提升专业知识,还有助于长期职业发展。许多人选择在线学习硕士课程,边工作边学习,且部分公司还会支持员工进修并支付学费。
垂直发展,不断晋升:从初级数据分析师起步,逐步晋升为中级数据分析师、高级数据分析师、首席数据分析师、数据分析经理、数据分析总监等。每个阶段都需要积累更多经验,提升管理和决策能力。
职业转型:基于数据分析师与其他岗位在工具和技能上的重叠性,可转型为数据科学家、商业智能分析师、数据工程师、数据架构师、DBA(数据库管理员)、数据库开发员等。后续会详细介绍转型方法。
需要注意的是,进修深造和职业转型并不冲突,在学习的过程中,你可以同时尝试职业转型,或者借助学位获得更好的晋升机会,一步步实现自己的职业目标。
CDA数据分析师 出品 编译:Mika

如果你想进一步深入学习数据分析师相关知识,探索更多职业发展技巧,欢迎通过链接进入学习: https://edu.cda.cn/goods/show/2567?targetId=3647&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11