
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑:
Youtube百万粉丝大V数据分析师Alex Freberg,20分钟讲清楚。
想要成为数据分析师,有些技能必不可少:
必备技能:SQL、Excel、Tableau/Power BI(数据可视化工具)。这些技能是数据分析师日常工作的基础,能帮助你高效处理和展示数据。
进阶技能:Python、AWS/Azure等云平台。虽然学习起来有一定难度,但随着职业发展,它们会为你提供更强大的数据处理和分析能力,且会在不断实践中逐渐熟练掌握。
简历是向HR展示自己的重要窗口,制作时需注意以下几点:
突出优势技能:将自己最擅长的技能在简历中重点呈现,比如如果SQL是你的强项,可在总结、技能、工作经历或作品集中多次提及。
精简内容:去除与数据分析师岗位无关的工作经历和技能。不过,如果过往工作积累了领域专业知识,且与目标岗位所在行业相关,比如医疗行业的数据分析岗位与护士工作背景,就可以保留。
保持专业:确保简历条理清晰、风格简洁,避免使用鲜艳颜色或附上大头照,以展现专业性。
项目能够直观地展示你的能力和工作成果,具体步骤如下:
确定项目数量:准备2-5个项目即可。
项目实施流程:先获取数据集(可从网页爬取,或在Kaggle、Google等平台获取);接着使用Python的pandas库或SQL对数据进行清洗和转换,并将处理后的数据放在SQL中生成视图,展示SQL能力;然后连接数据可视化工具,如Tableau或Power BI,进行可视化操作。
展示方式:将作品集发布在Github上,或建立个人网站,并在简历中附上链接,方便HR查看。
与猎头合作能增加获得面试机会的概率,具体方法如下:
利用LinkedIn:完善LinkedIn资料,表明自己正在寻找数据分析师或初级数据分析师的工作,吸引猎头主动联系你。
主动联系猎头:若不想被动等待,可通过电话或邮件主动联系猎头。建议打电话沟通,让猎头了解你的求职意向,以便在你发送简历后,他们能更好地匹配岗位。
积极合作:与猎头密切合作,借助他们的内部消息和合作渠道,获得更多面试机会。
面试是获得工作的关键一步,需做好以下准备:
技术问题准备:对于初级数据分析师,面试中的技术问题主要围绕SQL;随着经验积累,Python相关问题也会增多。提前复习和练习相关知识,做到心中有数。
常规问题准备:像“我最大的弱点是什么”这类常见问题,提前思考并写好答案,避免在面试中陷入被动。
外在表现:注意着装得体,保持自信。即使紧张,也要在面试过程中尽量展现出自信的态度。
在工作过程中,持续学习和提升技术能力是关键:
编程语言:学习Python或R,提升数据处理和分析的编程能力。
ETL工具:掌握ETL(抽取、转化、加载)技术,如SSIS、Azure Data Factory、AWS Glue等工具,用于高效处理数据。
回到学校进修:攻读与数据分析相关的硕士学位,如计算机科学、信息系统、统计、数据分析、数据科学等专业。这不仅能提升专业知识,还有助于长期职业发展。许多人选择在线学习硕士课程,边工作边学习,且部分公司还会支持员工进修并支付学费。
垂直发展,不断晋升:从初级数据分析师起步,逐步晋升为中级数据分析师、高级数据分析师、首席数据分析师、数据分析经理、数据分析总监等。每个阶段都需要积累更多经验,提升管理和决策能力。
职业转型:基于数据分析师与其他岗位在工具和技能上的重叠性,可转型为数据科学家、商业智能分析师、数据工程师、数据架构师、DBA(数据库管理员)、数据库开发员等。后续会详细介绍转型方法。
需要注意的是,进修深造和职业转型并不冲突,在学习的过程中,你可以同时尝试职业转型,或者借助学位获得更好的晋升机会,一步步实现自己的职业目标。
CDA数据分析师 出品 编译:Mika
如果你想进一步深入学习数据分析师相关知识,探索更多职业发展技巧,欢迎通过链接进入学习: https://edu.cda.cn/goods/show/2567?targetId=3647&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20