
持证人简介:
CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有丰富的行业经验。
从理解“我们需要什么样的报表”,到掌握“基于业务的数据分析五步曲”,再到学会“Excel动态报表设计”的方法,我们距离用数据驱动决策又近了一步。
如果大家想听刘老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3810?targetId=6583&preview=0
可视化报表是通过图表、图形等可视化元素,将抽象的数据信息呈现为直观、易理解的形式。
相较于传统的表格和文字报表,可视化报表更加生动、直观,能够更好地传达数据的趋势、关联和变化。它强调通过视觉感知,让用户能够更迅速、准确地理解复杂的数据关系。
可视化报表通过图表和图形的方式,更生动地展示数据的趋势和变化。相对于传统表格中冗长的数字,图表可以直观地描绘数据的波动、增长趋势等。
可视化报表工具通常支持交互性的操作,能够实现各个表之间的数据联动。这种交互性使得用户能够更深入地挖掘数据,发现隐藏在庞大数据集中的关联性和模式。
可视化报表通过图表和图形的形式,将复杂的数据关系以直观、生动的方式传递给用户。这有助于降低信息的认知难度,使得非专业人员也能够轻松理解数据。
可视化报表可以通过颜色、标签等方式强调异常点和关键数据。这使得用户在大量数据中更容易发现异常情况或关键趋势,而在传统表格中可能需要更多的时间和专业知识。
可视化报表使得比较和分析更为直观。通过将数据以图形的形式呈现,用户能够更容易比较不同时间段、不同类别的数据。
拥有好的报表工具和呈现形式是基础,但更核心的是科学的数据分析流程。如何确保我们的分析是围绕业务目标、解决实际问题的呢?这里介绍一个“基于业务的数据化分析五步曲”。
这是数据分析的起点和灵魂。首先要清晰地定义:我们要分析什么?解决什么业务问题?期望达到什么目标?明确分析的价值所在。例如,目标是提升销售额,问题可能是“哪个区域/产品的销售额下降了?原因是什么?”
明确问题后,需要确定从哪里获取相关数据(来源),需要哪些数据(范围),以及数据更新的频率(频率)。
获取原始数据后,往往需要进行清洗、整理和构建。这包括建立规范的“实体”数据表(例如产品表、客户表、订单表),定义表之间的关联(数据关系模型),并设计清晰的表结构。保证数据的准确性、一致性和可用性。
这是将数据转化为信息的关键步骤。需要根据分析目标,选择合适的数据分析模型(如对比分析、趋势分析、构成分析等),建立关键的数据分析指标(如销售额、增长率、利润率、用户活跃度等),并设定计算逻辑。
最后一步是将分析结果有效地呈现出来。通过动态化、可视化的报表,从多个角度展示数据分析结果,将复杂的分析过程和结论,以最“好看、好懂、好快”的方式传递给决策者,最终实现数据分析的商业价值。
这五个步骤环环相扣,强调从业务出发,到数据采集、处理、分析,最终回归业务价值呈现,形成一个闭环。
提到数据分析和报表制作,Excel 是绕不开的神器。很多人以为Excel只能做静态报表,其实,它完全有能力构建出色的动态报表!主要有以下几种常用方法:
这是Excel中最常用也相对简单的动态报表构建方式。通过透视表快速汇总、聚合数据,再结合切片器(和日程表)作为交互控件,用户只需点击切片器按钮,就能轻松筛选不同维度(如时间、区域、产品类别等),报表和图表会随之动态更新。
这种方法更灵活,自由度更高。我们可以利用Excel强大的函数体系(如 VLOOKUP, SUMIFS, INDEX, OFFSET, INDIRECT 等查找引用和计算函数),结合表单控件(如下拉框、复选框、滚动条、选项按钮等)来创建交互界面。用户通过操作控件选择条件,函数根据控件返回的值动态提取和计算数据,从而驱动报表更新。
无论使用哪种方法,设计动态报表时,通常也遵循 三层结构 的思路:
业务闭环与数字化运营的前提是建立在数据洞察和分析策略的基础上,CDA一级考察业务数据分析,Excel,SQL,多维数据处理,统计学以及PowerBI数据可视化。
如果大家想听刘老师完整版分享视频,可以点击下方链接。
学习入口:https://edu.cda.cn/goods/show/3810?targetId=6583&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09