京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在电商、零售、甚至内容付费业务中,你真的了解你的客户吗?
有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是大客户,现在却很久没买过……如果你能精准识别这些不同类型的客户,并采取针对性的运营策略,销售额是不是会提升很多?
今天,我们来聊聊一个简单但超好用的用户分层模型——RFM模型。抛开枯燥的理论,用接地气的方式,帮你真正掌握并用起来。
RFM是Recency(最近一次消费)、Frequency(消费频率)、Monetary(消费金额)的缩写,它用来衡量客户的价值和忠诚度。
你有两个客户:
显然,小张的价值更高,更值得维护。而小李,可能已经处于流失边缘,需要挽回。
RFM模型就是用数据来量化这种“感觉”,让你能科学地判断哪些客户值得重点运营,哪些客户需要挽回。
要计算RFM,你至少需要三列数据:
假设你的数据长这样(今天是2024年4月1日):

R(Recency,最近消费天数)
R=分析日期−最近一次消费日期
例如,U001最近一次消费是3月15日,今天是4月1日,所以R = 17天。
F(Frequency,消费频率)
统计用户的总消费次数,比如U001有2次消费,U002只有1次消费。
M(Monetary,消费金额)
统计用户的总消费金额,比如U001的M=250+180=430元。
计算后的数据如下:

为了更好地分层,我们需要给R、F、M分别打分。最简单的方法是按照数据分位数进行分组,比如:
R评分(R值越小越好,说明用户更活跃)
F评分(F值越大越好,说明客户粘性更高)
M评分(M值越大越好,说明客户贡献更大)
计算后,每个用户的RFM得分如下:

根据RFM得分,我们可以把客户分成不同类型,并制定不同的营销策略:
举个例子:

RFM模型的核心价值,不只是简单地打个分、分个群,而是要让这些数据真正指导运营决策,提高业务增长。作为一个资深数据分析师,我的建议是:
RFM模型不是“算完就完”,关键在于行动。很多人计算完RFM得分后,就把它丢到PPT里汇报,然后就没有然后了。

RFM分析的价值,在于它能帮助你精准地找到值得维护的客户,并指导具体的营销策略。重要客户不只是“给点折扣”,而是要用长期运营的思维去维护,比如VIP专属权益、个性化推荐。

复购低但金额大的客户,可能对价格敏感度不高,可以尝试提供高端产品或会员服务,而不是一味打折。
快要流失的客户,“复购窗口”是有限的,如果不在30天内召回,可能后续投入再多也无效。

别死磕RFM数值,要结合业务场景解读。
如果你做的是高客单价B2B业务,一个客户一年买一次,但金额很大,F值低并不代表他价值低。如果你是做日用快消,客户每天买一次才算正常,F=2 可能就意味着流失风险。

对不同业务,RFM的评分标准可以动态调整,而不是固定的四分位。
RFM只是起点,别被局限。
想更进一步?可以加入用户行为数据,比如浏览、加购但未下单的行为,来做更细粒度的分析。结合LTV(客户生命周期价值)计算,看看哪些RFM高分用户实际上为你创造了长期利润。用AI或机器学习做聚类分析(如K-means),比手动设定RFM区间更精准。
数据分析最重要的不是方法,而是如何落地执行。 RFM只是一个工具,真正能让它产生价值的,是你如何用它去优化运营策略。真正的增长,不是靠算分,而是靠行动。
对于数据分析来说,业务分析是最重要的,所以是CDA数据分析师一级把业务分析模型作为重要考点。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24