
“我们的利润率上升了,但销售额却没变,这是为什么?”
“某个业务的市场份额在下滑,到底是什么原因?”
“公司整体业绩稳定,但某些部门的表现差异巨大,哪些因素影响了它们?” ......
以上是企业经营过程中经常会遇到的问题,如何才能找到这些问题的答案,使用构成分析拆解数据可能会有奇效。
接下来,通过一个业务案例,带大家理解什么是构成分析以及如何使用它分析业务问题。
有一家食品经销商,主要销售休闲零食、饮料和主食。最近,财务部门发给经营者一份报告,显示过去三个月的销售额保持在 300 万元不变,但利润率却从 20% 上升到 25%。
这个数据让人不禁疑惑:销售额没变,利润率为什么会提升?是因为商品售价提高了,还是因为更高利润的品类卖得更多了?
经营者把这个问题抛给了数据分析师,数据分析师尝试用构成分析方法找出利润率上升的原因。
构成分析是通过分析整体中各部分所占的比例,了解各部分对整体的贡献程度。
构成分析的核心是:拆解整体数据,看清内部结构的变化。它关注的是各组成部分的占比,以及这些占比如何随时间或外部条件变化。
构成分析的关键不在于单看“总数”的变化,而是深入拆解各部分的贡献,从而发现真正的业务动因。
构成分析是CDA数据分析师一级的知识点,业务分析是CDA数据分析一级考核的重点,因为数据分析工作岗位就要基于业务分析,如果是销售或者业务负责的小伙伴,可以去重点学习。
PS. 新版教材p65所处位置:第二章数据分析方法 >第二节由基础分析范式引申出的六种分析方法 >第三小节 构成分析方法
如果想测试一下自己的构成分析的理解程度、业务分析了解程度。
为了搞清楚利润率变化的真正原因,数据分析师整理了过去三个月各品类的销售额:
先不看利润率,而是关注销售额的构成变化,会发现: · 休闲零食的销售占比从 33.3% 上升到 46.7% · 主食的销售占比从 50% 降到 33.3% · 饮料的占比略有提升
也就是说,虽然总销售额没变,但利润率较高的休闲零食销售占比上升,利润率较低的主食占比下降,这可能是利润率提高的关键因素。
为了更直观地理解销售构成的变化,使用百分比堆叠柱状图来展示各品类的占比变化。
从图表可以清晰看到: · 休闲零食占比不断上升,表明其销售额在整体收入中的比重越来越大。 · 主食占比下降,说明低利润率的产品销售占比减少。 · 饮料略有上升,但整体影响较小。
这个分析结果说明,利润率提升主要是因为高利润的品类占比增加了,拉高了整体利润率。这为食品经销商提供了一个重要的业务洞察:未来应该继续加强高利润品类的推广,而不是单纯追求总销售额的增长。
由此可见,构成分析可以帮助企业: 1. 精准拆解业务问题 识别业绩变化的真正驱动因素,而不是停留在表面的数据增长或下降。 2. 优化产品或用户结构 发现高价值产品或用户的比例变化,并调整营销策略。 3. 支持长期战略决策 帮助企业识别哪些业务或产品线值得重点投入。
构成分析是一个极其实用的分析方法,它不仅仅是简单的比例计算,而是一种深层次的数据解读手段。通过对数据的结构变化进行分析,可以找到影响业务增长或下滑的真正原因,避免单纯依赖总量指标做出错误决策。
以上的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28