京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?”
“是不是广告投放的用户质量不高?还是我们的产品问题?”
在给华为的培训中提到了这个问题,一位资深的数据分析师立马抢答:“这里面肯定有很多变量的关系值得深挖。” 这时候,关系分析(Relationship Analysis) 就派上了用场。

关系分析,简单来说,就是找出变量之间的联系。进行数据分析时会发现,事情很少是孤立发生的——用户流失可能和他们的购买行为、客服体验、甚至是天气都有关系。但哪些因素是关键?哪些因素真的影响了用户决策? 关系分析就是搞清楚这些问题的“侦探工具”。
关系分析是数据分析中最基础也是最重要的环节之一,主要用于:

回到我们的业务案例:用户流失率上升,我们需要找出原因。
为了搞清楚问题,我们先来拆解它:

我们需要用到的数据包括:

拿到数据后,我们先做个简单的统计:
过去一个月流失的用户:10,000
这些用户中,70% 在最近3个月内没有复购
40% 的用户曾在客服端提交过投诉
60% 的用户使用过优惠券
这里已经可以看出一些苗头了——客服问题可能是影响流失的因素之一,而优惠券使用是否和流失有关,还需要进一步分析。
我们先计算各变量与“用户是否流失”之间的相关性(皮尔逊相关系数):
购买次数(-0.72):负相关,购买次数越多,流失率越低
订单金额(-0.65):负相关,高客单价用户流失可能性低
客服响应时间(+0.53):正相关,客服响应慢,用户流失可能性大
会员等级(卡方检验 p<0.05):显著相关,高级会员更可能留存
看起来,客服响应时间和购买次数是最关键的因素。
我们用逻辑回归模型来预测用户流失的概率:
绘制散点图能够更直观的展示流失率和客服响应时间之间的关系:

图中Y轴是流失概率,x轴是客服相应时间/小时。
观察发现,客服响应时间越长,用户的流失概率越高。这个发现和我们的相关分析、回归分析结果是一致的。
通过关系分析可以得出如下结论:
客服响应时间是影响用户流失的关键因素之一,企业应优化客服系统,提高响应速度。
高频购买的用户流失率更低,可以针对低频用户设计挽留策略,例如个性化推荐、精准营销。
高级会员流失率更低,可以通过引导用户升级会员,提高用户粘性。
优化建议:
缩短客服响应时间:改进客服机制,引入自动化客服,提高响应效率。
提升用户购买频次:通过营销策略(如折扣、积分系统)刺激用户复购。
加强会员制度:提供更多会员专属权益,引导普通用户升级。
综上,关系分析不仅是一个数据分析方法,更是一种业务洞察工具。通过找出变量之间的联系,能更精准地找到业务问题的根源,并制定有针对性的优化策略。

随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27