
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?”
“是不是广告投放的用户质量不高?还是我们的产品问题?”
在给华为的培训中提到了这个问题,一位资深的数据分析师立马抢答:“这里面肯定有很多变量的关系值得深挖。” 这时候,关系分析(Relationship Analysis) 就派上了用场。
关系分析,简单来说,就是找出变量之间的联系。进行数据分析时会发现,事情很少是孤立发生的——用户流失可能和他们的购买行为、客服体验、甚至是天气都有关系。但哪些因素是关键?哪些因素真的影响了用户决策? 关系分析就是搞清楚这些问题的“侦探工具”。
关系分析是数据分析中最基础也是最重要的环节之一,主要用于:
回到我们的业务案例:用户流失率上升,我们需要找出原因。
为了搞清楚问题,我们先来拆解它:
我们需要用到的数据包括:
拿到数据后,我们先做个简单的统计:
过去一个月流失的用户:10,000
这些用户中,70% 在最近3个月内没有复购
40% 的用户曾在客服端提交过投诉
60% 的用户使用过优惠券
这里已经可以看出一些苗头了——客服问题可能是影响流失的因素之一,而优惠券使用是否和流失有关,还需要进一步分析。
我们先计算各变量与“用户是否流失”之间的相关性(皮尔逊相关系数):
购买次数(-0.72):负相关,购买次数越多,流失率越低
订单金额(-0.65):负相关,高客单价用户流失可能性低
客服响应时间(+0.53):正相关,客服响应慢,用户流失可能性大
会员等级(卡方检验 p<0.05):显著相关,高级会员更可能留存
看起来,客服响应时间和购买次数是最关键的因素。
我们用逻辑回归模型来预测用户流失的概率:
绘制散点图能够更直观的展示流失率和客服响应时间之间的关系:
图中Y轴是流失概率,x轴是客服相应时间/小时。
观察发现,客服响应时间越长,用户的流失概率越高。这个发现和我们的相关分析、回归分析结果是一致的。
通过关系分析可以得出如下结论:
客服响应时间是影响用户流失的关键因素之一,企业应优化客服系统,提高响应速度。
高频购买的用户流失率更低,可以针对低频用户设计挽留策略,例如个性化推荐、精准营销。
高级会员流失率更低,可以通过引导用户升级会员,提高用户粘性。
优化建议:
缩短客服响应时间:改进客服机制,引入自动化客服,提高响应效率。
提升用户购买频次:通过营销策略(如折扣、积分系统)刺激用户复购。
加强会员制度:提供更多会员专属权益,引导普通用户升级。
综上,关系分析不仅是一个数据分析方法,更是一种业务洞察工具。通过找出变量之间的联系,能更精准地找到业务问题的根源,并制定有针对性的优化策略。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08