
在数据分析中,地图是一种非常直观的可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。无论是展示销售数据、人口分布、还是疫情传播,地图都能提供一目了然的信息。本文将详细介绍如何使用Pyecharts绘制地图,适合数据分析小白入门。
地图在数据分析中的应用非常广泛,以下是一些常见的应用场景:
Pyecharts是一个基于Echarts的Python可视化库,能够轻松生成各种精美的图表。Echarts是百度开源的一个数据可视化工具,支持多种图表类型,包括折线图、柱状图、饼图、地图等。Pyecharts使得在Python中使用Echarts变得非常简单。
在开始之前,我们需要先安装Pyecharts。可以通过以下命令安装:
pip install pyecharts
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
from pyecharts import options as opts
from pyecharts.charts import Map
地图数据通常是一个包含地区名称和对应数值的列表。例如:
data = [("北京市", 100), ("上海市", 200), ("广东省", 300), ("四川省", 400), ("陕西省", 500)]
接下来,我们创建一个地图对象,并设置地图类型为“china”:
map_chart = Map()
map_chart.add("示例地图", data, "china"
,zoom=1.5 # 设置缩放
,center=[100, 36] # 设置默认中心位置
,is_roam=False # 禁用缩放 拖拽
)
map_chart.render_notebook()
为了让地图更加美观,我们可以设置一些全局配置,例如标题、视觉映射等:
map_chart.set_global_opts(
title_opts=opts.TitleOpts(title="中国地图示例"),
visualmap_opts=opts.VisualMapOpts(max_=500)
)
map_chart.render_notebook()
最后,我们还可以将地图渲染为HTML文件:
map_chart.render("china_map.html")
运行上述代码后,会在当前目录下生成一个名为china_map.html的文件。打开这个文件,你就可以看到一个交互式的中国地图,鼠标悬停在各个省份上时,会显示对应的数值。
为了让地图更加精美,我们可以从以下几个方面进行优化:
通过设置visualmap_opts中的is_piecewise=True,我们可以使用分段颜色来展示数据:
map_chart.set_global_opts(
visualmap_opts=opts.VisualMapOpts(
is_piecewise=True,
pieces=[
{"min": 0, "max": 100, "label": "0-100", "color": "#FFE4E1"},
{"min": 101, "max": 200, "label": "101-200", "color": "#FF7F50"},
{"min": 201, "max": 300, "label": "201-300", "color": "#FF4500"},
{"min": 301, "max": 400, "label": "301-400", "color": "#FF0000"},
{"min": 401, "max": 500, "label": "401-500", "color": "#8B0000"},
]
)
)
Pyecharts还支持3D地图,可以通过Map3D图表来启用:
from pyecharts.charts import Map3D
example_data = [
[[119.107078, 36.70925, 1000], [116.587245, 35.415393, 1000]],
[[117.000923, 36.675807], [120.355173, 36.082982]],
[[118.047648, 36.814939], [118.66471, 37.434564]],
[[121.391382, 37.539297], [119.107078, 36.70925]],
[[116.587245, 35.415393], [122.116394, 37.509691]],
[[119.461208, 35.428588], [118.326443, 35.065282]],
[[116.307428, 37.453968], [115.469381, 35.246531]],
]
(Map3D()
.add_schema(
maptype="山东",
itemstyle_opts=opts.ItemStyleOpts(
color="rgb(5,101,123)",
opacity=1,
border_width=0.8,
border_color="rgb(62,215,213)",
),
light_opts=opts.Map3DLightOpts(
main_color="#fff",
main_intensity=1.2,
is_main_shadow=False,
main_alpha=55,
main_beta=10,
ambient_intensity=0.3,
),
view_control_opts=opts.Map3DViewControlOpts(center=[-10, 0, 10]),
post_effect_opts=opts.Map3DPostEffectOpts(is_enable=False),
)
.add(
series_name="",
data_pair=example_data,
type_=ChartType.LINES3D,
effect=opts.Lines3DEffectOpts(
is_show=True,
period=4,
trail_width=3,
trail_length=0.5,
trail_color="#f00",
trail_opacity=1,
),
linestyle_opts=opts.LineStyleOpts(is_show=False, color="#fff", opacity=0),
)
.set_global_opts(title_opts=opts.TitleOpts(title="Map3D-Lines3D"))
.render("map3d_with_lines3d.html")
)
通过设置map_style,我们可以自定义地图的样式,例如背景颜色、边界颜色等:
map_chart.set_series_opts(
label_opts=opts.LabelOpts(is_show=False),
itemstyle_opts=opts.ItemStyleOpts(color="blue", border_color="black",area_color="green")
)
数据可视化是数据分析师需要掌握的重要技能,也是CDA数据分析师一级的重要考点,如果你想实操一下自己的可视化技能。
相信你已经掌握了如何使用Pyecharts绘制地图的基本方法。地图作为一种强大的数据可视化工具,能够帮助我们更好地理解数据在地理空间上的分布情况。通过不断优化地图的样式和交互效果,我们可以让数据展示更加生动和直观。
希望这篇文章能够帮助你在数据分析的道路上更进一步!如果你有任何问题或建议,欢迎在评论区留言讨论。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
推荐学习:https://edu.cda.cn/goods/show/3243?targetId=5333&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29