京公网安备 11010802034615号
经营许可证编号:京B2-20210330
离群值的判断与处理
我们在数据分析的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。
离群值产生的原因大致有两点:
1.总体固有变异的极端表现,这是真实而正常的数据,只是在这次实验中表现的有些极端,这类离群值与其余观测值属于同一总体。
2.由于试验条件和实验方法的偶然性,或观测、记录、计算时的失误所产生的结果,是一种非正常的、错误的数据,这些数据与其余观测值不属于同一总体。
由于数据的分布不同,判断离群值的方法也有所差别,在此只介绍国标GB/T4883-2008对于正态分布情况下的离群值判断方法,其他分布情况下,我还没有找到相关资料。
对于离群值,国标也有一些概念定义:
1.检出水平
为检验出离群值而指定的统计检验的显著性水平,和大多数检验一样,α一般为0.05
2.剔除水平
为检验出离群值是否为高度离群值而指定的统计检验的显著性水平,剔除水平α*不应超过检出水平α,通常为0.01,个人认为这个剔除水平就是判断该离群值是否需要实际剔除,也就是说该离群值有可能是第二类原因产生的非正常样本数据。
3.统计离群值
在剔除水平下统计检验为显著的离群值
4.歧离值
在检出水平下显著,而在剔除水平下不显著的离群值。
================================================
正态分布情况下的离群值判断方法,大致可分为两类:可以检验剔除水平和不可检验剔除水平
一、可检验剔除水平
1.总体标准差已知时,奈尔检验法
对样本数据按从小到大顺序排序,
如怀疑最大值X(n)为最大值,则计算统计量Rn
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Rn'
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α*(n)时,判定X(1)为统计离群值,否则不能判定
2.总体标准差未知时,格拉布斯检验法
对样本数据按从小到大顺序排序,然后计算样本均值和样本标准差s

如怀疑最大值X(n)为最大值,计算统计量Gn
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Gn'

确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α*(n)时,判定X(1)为统计离群值,否则不能判定
3.总体标准差未知时,狄克逊(Dixon)检验法
对样本数据按从小到大顺序排序
样本量n在3-30时
计算统计量

样本量n在30-100时
计算统计量

确定检出水平α,查狄克逊系数表(见国标GB/T4883-2008),得出临界值
当Dn>D1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当Dn'>D1-α*(n)时,判定低端值X(1)为离群值,否则不能判定
4.总体标准差未知时,偏度-峰度检验法
我们知道峰度和偏度是判断数据是否为正态分布的指标,而离群值则明显偏离样本主体,因此我们也可以使用偏度-峰度检验法来判断离群值
单侧情形——偏度检验法
当离群值处于高端或低端一侧时,可使用偏度检验法判断,首先构造偏度统计量bs
确定检出水平α,查偏度检验系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当bs'>b1-α(n)时,判定低端值X(1)为离群值,否则不能判定
确定剔除水平α*,查偏度系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α*(n)时,判定高端值X(n)为统计离群值,否则不能判定
当bs'>b1-α*(n)时,判定低端值X(1)为统计离群值,否则不能判定
双侧情形——峰度检验法
当高端、低端两侧都可能出现离群值时,可使用峰度检验法判断,首先构造峰度统计量bk
确定检出水平α,查峰度检验系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α(n)时,判定离均值最远的观测值为离群值,否则判定未发现离群值
确定剔除水平α*,查峰度系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α*(n)时,判定离均值最远的观测值为统计离群值,否则未发现统计离群值。
二、不可检验剔除水平
1.观察法
根据直方图或四分位图进行判断,现在很多统计软件在绘制这两种图时,都会将离群值特殊标记,一般认为在均值±3倍标准差以外都属于离群值,高出四分位距两倍以上也属于离群值。
2.莱伊达法
又称为3σ准则,在已知总体标准差的情况下使用σ进行判断,但是实际上总体标准差往往未知,因此常使用样本标准差s替代σ,以样本均值替代真值,具体为
Xd是疑似离群值,X为均值
如果疑似离群值与均值的差值大于三倍标准差,则可认为该值为离群值。
3.肖维特法
统计量
如果计算出的ω值大于肖维特系数表中相应测定次数n时的值,则可认为该值为异常值
3.罗曼诺夫斯基检验法
又称t检验,首先将疑似离群值剔除,然后计算剔除后的均值和标准差

根据测量次数n和显著性水平α,进行t检验,得出系数k,如果
则认为xj为离群值
4.4d检验法



5.中位数与算数平均值比较判断法
我们知道中位数居于一组数据中间的数,而均值则可认为是一组数字的“重心”或“平衡点”,当二者相等的时候,可认为这组数字是绝对平衡、没有离群值的,我们可以据此进行判断,当二者相差较大时,表面该组数据可能存在离群值,将疑似离群值剔除之后,再计算均值和中位数,如果二者相差变小,则可认为被剔除值是离群值。
======================================
数据分析师们:判断离群值方法的选择与应注意的问题
1.合理选择离群值的判断方法
离群值的判断方法很多,实际中到底选用哪一个,需根据对测量要求的精准度和测量次数多少来综合确定,一般情况下,测量次数多于30,或大于10次且只做粗略判断时,使用莱伊达法即可;判断精度要求不高,但要求快捷方便时,可以选用4d和中位数与算数平均数比较法。实际上,对于不用查表的方法大都比较便捷,但是代价是精度不够,且无法检验剔除水平,相反一些需要借助查表的方法精度较高但是计算复杂,各有利弊。
2.准确找出离群值
一般情况下,测量列中残差较大者就是疑似离群值,它也就是样本数据中的最大值或最小值
3.查找产生离群值的原因
已经判断为离群值的,即使是统计离群值,也不要简单剔除了之,应进一步分析产生离群值的原因。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16