
离群值的判断与处理
我们在数据分析的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。
离群值产生的原因大致有两点:
1.总体固有变异的极端表现,这是真实而正常的数据,只是在这次实验中表现的有些极端,这类离群值与其余观测值属于同一总体。
2.由于试验条件和实验方法的偶然性,或观测、记录、计算时的失误所产生的结果,是一种非正常的、错误的数据,这些数据与其余观测值不属于同一总体。
由于数据的分布不同,判断离群值的方法也有所差别,在此只介绍国标GB/T4883-2008对于正态分布情况下的离群值判断方法,其他分布情况下,我还没有找到相关资料。
对于离群值,国标也有一些概念定义:
1.检出水平
为检验出离群值而指定的统计检验的显著性水平,和大多数检验一样,α一般为0.05
2.剔除水平
为检验出离群值是否为高度离群值而指定的统计检验的显著性水平,剔除水平α*不应超过检出水平α,通常为0.01,个人认为这个剔除水平就是判断该离群值是否需要实际剔除,也就是说该离群值有可能是第二类原因产生的非正常样本数据。
3.统计离群值
在剔除水平下统计检验为显著的离群值
4.歧离值
在检出水平下显著,而在剔除水平下不显著的离群值。
================================================
正态分布情况下的离群值判断方法,大致可分为两类:可以检验剔除水平和不可检验剔除水平
一、可检验剔除水平
1.总体标准差已知时,奈尔检验法
对样本数据按从小到大顺序排序,
如怀疑最大值X(n)为最大值,则计算统计量Rn
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn>R1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Rn'
确定检出水平α,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查奈尔系数表(见国标GB/T4883-2008),得出临界值
当Rn'>R1-α*(n)时,判定X(1)为统计离群值,否则不能判定
2.总体标准差未知时,格拉布斯检验法
对样本数据按从小到大顺序排序,然后计算样本均值和样本标准差s
如怀疑最大值X(n)为最大值,计算统计量Gn
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α(n)时,判定X(n)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn>G1-α*(n)时,判定X(n)为统计离群值,否则不能判定
如怀疑最小值X(1)为最大值,则计算统计量Gn'
确定检出水平α,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α(n)时,判定X(1)为离群值,否则不能判定
确定剔除水平α*,查出格拉布斯系数表(见国标GB/T4883-2008),得出临界值
当Gn'>G1-α*(n)时,判定X(1)为统计离群值,否则不能判定
3.总体标准差未知时,狄克逊(Dixon)检验法
对样本数据按从小到大顺序排序
样本量n在3-30时
计算统计量
样本量n在30-100时
计算统计量
确定检出水平α,查狄克逊系数表(见国标GB/T4883-2008),得出临界值
当Dn>D1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当Dn'>D1-α*(n)时,判定低端值X(1)为离群值,否则不能判定
4.总体标准差未知时,偏度-峰度检验法
我们知道峰度和偏度是判断数据是否为正态分布的指标,而离群值则明显偏离样本主体,因此我们也可以使用偏度-峰度检验法来判断离群值
单侧情形——偏度检验法
当离群值处于高端或低端一侧时,可使用偏度检验法判断,首先构造偏度统计量bs
确定检出水平α,查偏度检验系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α(n)时,判定高端值X(n)为离群值,否则不能判定
当bs'>b1-α(n)时,判定低端值X(1)为离群值,否则不能判定
确定剔除水平α*,查偏度系数表(见国标GB/T4883-2008),得出临界值
当bs>b1-α*(n)时,判定高端值X(n)为统计离群值,否则不能判定
当bs'>b1-α*(n)时,判定低端值X(1)为统计离群值,否则不能判定
双侧情形——峰度检验法
当高端、低端两侧都可能出现离群值时,可使用峰度检验法判断,首先构造峰度统计量bk
确定检出水平α,查峰度检验系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α(n)时,判定离均值最远的观测值为离群值,否则判定未发现离群值
确定剔除水平α*,查峰度系数表(见国标GB/T4883-2008),得出临界值
当bk>b'1-α*(n)时,判定离均值最远的观测值为统计离群值,否则未发现统计离群值。
二、不可检验剔除水平
1.观察法
根据直方图或四分位图进行判断,现在很多统计软件在绘制这两种图时,都会将离群值特殊标记,一般认为在均值±3倍标准差以外都属于离群值,高出四分位距两倍以上也属于离群值。
2.莱伊达法
又称为3σ准则,在已知总体标准差的情况下使用σ进行判断,但是实际上总体标准差往往未知,因此常使用样本标准差s替代σ,以样本均值替代真值,具体为
Xd是疑似离群值,X为均值
如果疑似离群值与均值的差值大于三倍标准差,则可认为该值为离群值。
3.肖维特法
统计量
如果计算出的ω值大于肖维特系数表中相应测定次数n时的值,则可认为该值为异常值
3.罗曼诺夫斯基检验法
又称t检验,首先将疑似离群值剔除,然后计算剔除后的均值和标准差
根据测量次数n和显著性水平α,进行t检验,得出系数k,如果
则认为xj为离群值
4.4d检验法
5.中位数与算数平均值比较判断法
我们知道中位数居于一组数据中间的数,而均值则可认为是一组数字的“重心”或“平衡点”,当二者相等的时候,可认为这组数字是绝对平衡、没有离群值的,我们可以据此进行判断,当二者相差较大时,表面该组数据可能存在离群值,将疑似离群值剔除之后,再计算均值和中位数,如果二者相差变小,则可认为被剔除值是离群值。
======================================
数据分析师们:判断离群值方法的选择与应注意的问题
1.合理选择离群值的判断方法
离群值的判断方法很多,实际中到底选用哪一个,需根据对测量要求的精准度和测量次数多少来综合确定,一般情况下,测量次数多于30,或大于10次且只做粗略判断时,使用莱伊达法即可;判断精度要求不高,但要求快捷方便时,可以选用4d和中位数与算数平均数比较法。实际上,对于不用查表的方法大都比较便捷,但是代价是精度不够,且无法检验剔除水平,相反一些需要借助查表的方法精度较高但是计算复杂,各有利弊。
2.准确找出离群值
一般情况下,测量列中残差较大者就是疑似离群值,它也就是样本数据中的最大值或最小值
3.查找产生离群值的原因
已经判断为离群值的,即使是统计离群值,也不要简单剔除了之,应进一步分析产生离群值的原因。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23