
数据预处理是在竞赛中非常重要的步骤之一,它对于提高模型的性能和准确度至关重要。
数据清洗:数据清洗是指处理缺失值、异常值和噪声等问题、。常见的处理方法包括删除含有缺失值的样本或特征、使用插补方法填充缺失值,通过统计学或机器学习方法检测和处理异常值。
特征选择:特征选择是从原始数据中选择最具有代表性和相关性的特征,可以降低维度、提高模型效果、减少过拟合。常见的方法包括过滤法(如方差选择、互信息等)、包装法(如递归特征消除、基于模型的特征选择等)和嵌入法(如L1正则化、决策树重要性等)。
特征缩放:特征缩放是为了保证不同特征之间的尺度一致,使得模型能够更好地学习和收敛。常见的特征缩放方法包括标准化(通过减去均值并除以标准差)和归一化(将特征缩放到0-1之间)。
特征编码:对于离散型特征,需要进行编码转换成数值型特征,以便模型能够处理。常见的特征编码方法有独热编码(One-Hot Encoding)、标签编码(Label Encoding)等。
特征构造:特征构造是通过从原始特征中提取更多、更有用的信息来创建新的特征。例如,可以通过组合特征、进行数值转换、提取时间序列特征等方式来构造新特征,以增强模型的表达能力。
样本均衡:在不平衡数据集中,某些类别的样本数量较少,可能导致模型对少数类别的学习效果较差。为了解决这个问题,可以采用过采样(如SMOTE算法)或欠采样(如随机欠采样)等方法来调整样本分布,使得不同类别的样本数量更加平衡。
数据增强:数据增强是通过对原始数据进行变换和扩充,生成更多的训练样本,以增加模型的泛化能力。常见的数据增强方法包括图像旋转、翻转、缩放、平移等操作,以及文本的随机替换、插入或删除等变换。
数据集划分:在竞赛中,常将原始数据集划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于调参和模型选择,测试集用于评估模型的性能。划分过程需要注意保持数据集的分布一致性和避免数据泄露问题。
以上是竞赛中常用的数据预处理方法。不同的问题和数据类型可能需要采用不同的方法或组合多种方法来进行数据预处理。合理地应用这些方法能够提高模型的稳定性和效果,为竞赛选手带来更好的成绩。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10