
在数据分析中,有许多常用的统计指标可以帮助我们理解和描述数据集。下面是一些常见的统计指标:
平均数(Mean):平均数是数据集中所有数值的总和除以数据点的数量,用于表示数据的集中趋势。
中位数(Median):将数据集按大小排列,中位数是位于中间位置的数值,将数据分为两部分,使得有一半的数据比它大,另一半比它小。中位数对异常值不敏感,适合用于偏态分布的数据。
众数(Mode):众数是数据集中出现频率最高的数值,大多用于描述离散型数据。
标准差(Standard Deviation):标准差是方差的平方根,用于衡量数据的离散程度。标准差越大,表示数据点相对于平均数的差异越大。
百分位数(Percentile):百分位数是将排序后的数据集划分为等大小的百分位段,可用于描述数据的分布情况。例如,第75百分位数表示有75%的数据小于或等于该值。
峰度(Kurtosis):峰度衡量数据分布的尖锐程度。正常分布的峰度为3,高于3表示比正态分布更陡峭,低于3表示比正态分布更平缓。
相关系数(Correlation Coefficient):相关系数衡量两个变量之间的线性关系强度和方向。它的取值范围在-1到1之间,接近-1表示负相关,接近1表示正相关,接近0表示无相关。
回归分析中的R-squared:R-squared是回归模型拟合优度的指标,表示因变量的变异程度可以由自变量解释的比例。取值范围从0到1,越接近1表示模型拟合得越好。
样本标准误差(Standard Error of the Mean):样本标准误差表示样本均值与总体均值之间的差异,用于估计样本均值的精确性。
置信区间(Confidence Interval):置信区间是对总体参数估计的范围,表示我们有多大的置信度认为该区间包含真实的参数值。
这些统计指标在数据分析中扮演着重要的角色。它们可以帮助我们了解数据的集中趋势、分布形态、离散程度和相关关系,从而作出准确的推断和决策。然而,在使用统计指标时,需要注意数据的特点以及所采用的方法的局限性,避免产生误导性的结论。同时,结合可视化技术,更能直观地展示数据的特征和趋势,为数据分析提供全面的支持。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10