京公网安备 11010802034615号
经营许可证编号:京B2-20210330
主成分分析和聚类分析是常用的数据分析方法,两者相互独立但也可以结合使用。在进行聚类分析之前,通常需要对数据进行归一化处理。
主成分分析(PCA)是将多个相关变量转换为少数几个无关变量的过程,这些无关变量称为主成分。它通过计算方差来确定哪些变量是重要的,并且可以降低维度以提高数据可视化和分析的效果。主成分分析的结果可以用于了解数据之间的模式,例如变量之间的相关性或主要趋势。
聚类分析是一种将相似数据分组的方法,目标是将数据分为k个不同的簇。聚类分析能够帮助我们发现数据中的模式和关联性,它可以帮助我们理解数据集的组织结构并在数据挖掘和机器学习中找到有价值的信息。
可以使用PCA的结果进行聚类分析,因为主成分分析可以帮助我们发现数据的内部结构和模式,而聚类分析则可以根据这些结构将数据划分为不同的聚类。但是,需要注意的是,在将PCA的结果用于聚类分析之前,可能需要进一步处理数据。
在进行聚类分析之前,通常需要对数据进行归一化处理。这是因为在聚类分析中,每个变量的值都可能会影响最终的聚类结果。例如,如果某个变量的值范围远远大于其他变量,则该变量的权重将远高于其他变量,从而导致聚类结果的偏差。通过对数据进行标准化或归一化处理,可以确保每个变量对聚类结果的影响相等。
通常,归一化可以使用以下两种方法之一来完成:
在进行聚类分析之前,还需要确定聚类算法和聚类数量。在选择聚类算法时,应考虑数据集的大小和复杂性,以及与问题的相关性。常用的聚类算法包括k-means,层次聚类和DBSCAN等。聚类数量的选择也很重要,因为它可以影响聚类结果的质量。通常,可以使用统计指标,如轮廓系数,来确定最佳聚类数量。
在实践中,主成分分析和聚类分析的结合可以帮助我们更好地理解数据,并从中提取有价值的信息。通过将PCA的结果用于聚类分析,我们可以发现数据之间的内部结构和模式,并将数据划分为不同的聚类。通过对数据进行归一化处理,可以确保每个变量对聚类结果的影响相等,并且聚类结果是准确和可靠的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31