京公网安备 11010802034615号
经营许可证编号:京B2-20210330
主成分分析和聚类分析是常用的数据分析方法,两者相互独立但也可以结合使用。在进行聚类分析之前,通常需要对数据进行归一化处理。
主成分分析(PCA)是将多个相关变量转换为少数几个无关变量的过程,这些无关变量称为主成分。它通过计算方差来确定哪些变量是重要的,并且可以降低维度以提高数据可视化和分析的效果。主成分分析的结果可以用于了解数据之间的模式,例如变量之间的相关性或主要趋势。
聚类分析是一种将相似数据分组的方法,目标是将数据分为k个不同的簇。聚类分析能够帮助我们发现数据中的模式和关联性,它可以帮助我们理解数据集的组织结构并在数据挖掘和机器学习中找到有价值的信息。
可以使用PCA的结果进行聚类分析,因为主成分分析可以帮助我们发现数据的内部结构和模式,而聚类分析则可以根据这些结构将数据划分为不同的聚类。但是,需要注意的是,在将PCA的结果用于聚类分析之前,可能需要进一步处理数据。
在进行聚类分析之前,通常需要对数据进行归一化处理。这是因为在聚类分析中,每个变量的值都可能会影响最终的聚类结果。例如,如果某个变量的值范围远远大于其他变量,则该变量的权重将远高于其他变量,从而导致聚类结果的偏差。通过对数据进行标准化或归一化处理,可以确保每个变量对聚类结果的影响相等。
通常,归一化可以使用以下两种方法之一来完成:
在进行聚类分析之前,还需要确定聚类算法和聚类数量。在选择聚类算法时,应考虑数据集的大小和复杂性,以及与问题的相关性。常用的聚类算法包括k-means,层次聚类和DBSCAN等。聚类数量的选择也很重要,因为它可以影响聚类结果的质量。通常,可以使用统计指标,如轮廓系数,来确定最佳聚类数量。
在实践中,主成分分析和聚类分析的结合可以帮助我们更好地理解数据,并从中提取有价值的信息。通过将PCA的结果用于聚类分析,我们可以发现数据之间的内部结构和模式,并将数据划分为不同的聚类。通过对数据进行归一化处理,可以确保每个变量对聚类结果的影响相等,并且聚类结果是准确和可靠的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23