京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中的Pandas库可以读写xlsx和xls格式的Excel文件,但是如果需要读写包含宏的xlsm格式文件,则需要使用其他的工具或库。
XLSM文件是基于XML的电子表格文件,允许用户在其中嵌入VBA(Visual Basic for Applications)宏代码。由于这些宏代码可能会执行任意操作,包括修改电子表格本身,因此许多应用程序都禁止了它们的使用,以防止潜在的安全漏洞。
虽然Pandas本身没有直接支持读取xlsm文件的功能,但是我们可以使用openpyxl或者xlwings等其他库来处理这种类型的文件。下面分别介绍它们的具体用法。
Openpyxl是一个Python库,用于读写Excel 2010 xlsx / xlsm / xltx / xltm文件。使用openpyxl,可以使用Python脚本自动化Excel文件的创建、修改、读取和保存等操作。以下是如何使用openpyxl读取和写入xlsm文件的示例代码:
import openpyxl # 打开工作簿 workbook = openpyxl.load_workbook('example.xlsm', keep_vba=True) # 选择工作表 worksheet = workbook['Sheet1'] # 读取单元格的值 cell_value = worksheet.cell(row=2, column=2).value # 写入单元格的值 worksheet.cell(row=3, column=3, value='New Value') # 保存工作簿 workbook.save('example.xlsm')
在加载工作簿时,需要设置keep_vba参数为True,以便保留xlsm文件中的VBA宏代码。然后可以使用工作表对象和单元格对象读取和修改数据,最后使用save方法保存修改后的文件。
xlwings是一个用于实现Python和Excel之间互操作性的库。它允许您在Python中调用Excel中的宏、函数和公式,也可以将Python脚本嵌入到Excel中执行。以下是如何使用xlwings读取和写入xlsm文件的示例代码:
import xlwings as xw # 打开工作簿 workbook = xw.Book('example.xlsm') # 选择工作表 worksheet = workbook.sheets['Sheet1'] # 读取单元格的值 cell_value = worksheet.range('B2').value # 写入单元格的值 worksheet.range('C3').value = 'New Value' # 保存工作簿 workbook.save()
在使用xlwings时,可以使用Book对象打开工作簿,然后使用Sheets集合对象选择要操作的工作表。接下来可以使用Range对象读取和修改单元格的数据,最后使用Save方法保存修改后的文件。
总结而言,如果需要处理包含宏的xlsm格式文件,可以使用openpyxl或xlwings这样的Python库进行操作。虽然Pandas库本身不支持直接读写xlsm文件,但是可以通过这些库来实现Python和Excel之间的数据交换和互操作。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31