
在Tableau中计算累计百分比可以帮助我们更好地理解数据的趋势和变化。在本文中,我将向您展示如何使用Tableau计算累计百分比,并为您提供一些实用的技巧和建议。
首先,让我们了解什么是累计百分比。简而言之,累计百分比就是前N个值的总和除以所有值的总和。例如,如果我们有一个销售数据集合,我们可能会想知道每月的销售额占年度总销售额的百分比是多少。这种情况下,我们就可以使用累计百分比来计算每月份的销售额占全部销售额的百分比。
接下来,我们将一步一步地向您介绍如何在Tableau中计算累计百分比。我们将使用Tableau 2021.1版本进行演示。
第一步是准备您的数据。在此示例中,我们将使用“超级商店销售”数据集合,该数据集合包含了各种产品的销售数据以及相关的日期信息。我们需要将这些数据拖到Tableau的工作区域中,然后按照需要对其进行调整和过滤,以确保我们只处理所需的数据。
第二步是创建计算字段。要计算累计百分比,我们需要创建一个计算字段,该字段将为每个数据点计算其累计值。我们可以使用Window函数来实现这一点。在Tableau中,Window函数可以帮助我们在聚合函数中计算滑动窗口内的数值。
要创建计算字段,请单击“Analysis”选项卡,然后选择“Create Calculated Field”。然后,在计算字段编辑器中输入以下公式:
SUM([Sales]) / WINDOW_SUM(SUM([Sales]))
上述公式将为我们计算每个销售额数据点的累计百分比。请注意,此处假定您正在计算销售额的累计百分比。如果您要计算其他指标的累计百分比,例如数量或利润,则应相应地更改此公式。
第三步是将计算字段拖到工作区域中。现在,我们已经创建了计算字段,我们需要将它添加到工作表中以进行可视化。为此,请将计算字段拖放到工作区域中的行或列区域中,以便将其与其他维度和度量组合在一起。您还可以使用图表类型,例如线图或面积图,来更好地显示数据的趋势和变化。
最后,我们还可以对可视化进行进一步的调整和细节处理,以确保它符合我们的需求和要求。例如,我们可能希望更改轴标签、网格线和颜色方案,以突出显示数据中的重要信息和趋势。
在计算累计百分比时,还有一些有用的技巧和建议,可以帮助我们更好地使用Tableau,并获得更准确和有用的分析结果。以下是一些实用的技巧和建议:
月度级别的时间粒度,而不是日或周粒度。
总之,在Tableau中计算累计百分比可以帮助我们更好地理解数据的趋势和变化,从而做出更准确和有用的分析和决策。通过正确地准备数据、选择适当的计算函数和可视化类型,并了解一些实用的技巧和建议,我们可以更好地使用Tableau,并获得更好的分析结果。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08