京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Tableau中计算累计百分比可以帮助我们更好地理解数据的趋势和变化。在本文中,我将向您展示如何使用Tableau计算累计百分比,并为您提供一些实用的技巧和建议。
首先,让我们了解什么是累计百分比。简而言之,累计百分比就是前N个值的总和除以所有值的总和。例如,如果我们有一个销售数据集合,我们可能会想知道每月的销售额占年度总销售额的百分比是多少。这种情况下,我们就可以使用累计百分比来计算每月份的销售额占全部销售额的百分比。
接下来,我们将一步一步地向您介绍如何在Tableau中计算累计百分比。我们将使用Tableau 2021.1版本进行演示。
第一步是准备您的数据。在此示例中,我们将使用“超级商店销售”数据集合,该数据集合包含了各种产品的销售数据以及相关的日期信息。我们需要将这些数据拖到Tableau的工作区域中,然后按照需要对其进行调整和过滤,以确保我们只处理所需的数据。
第二步是创建计算字段。要计算累计百分比,我们需要创建一个计算字段,该字段将为每个数据点计算其累计值。我们可以使用Window函数来实现这一点。在Tableau中,Window函数可以帮助我们在聚合函数中计算滑动窗口内的数值。
要创建计算字段,请单击“Analysis”选项卡,然后选择“Create Calculated Field”。然后,在计算字段编辑器中输入以下公式:
SUM([Sales]) / WINDOW_SUM(SUM([Sales]))
上述公式将为我们计算每个销售额数据点的累计百分比。请注意,此处假定您正在计算销售额的累计百分比。如果您要计算其他指标的累计百分比,例如数量或利润,则应相应地更改此公式。
第三步是将计算字段拖到工作区域中。现在,我们已经创建了计算字段,我们需要将它添加到工作表中以进行可视化。为此,请将计算字段拖放到工作区域中的行或列区域中,以便将其与其他维度和度量组合在一起。您还可以使用图表类型,例如线图或面积图,来更好地显示数据的趋势和变化。
最后,我们还可以对可视化进行进一步的调整和细节处理,以确保它符合我们的需求和要求。例如,我们可能希望更改轴标签、网格线和颜色方案,以突出显示数据中的重要信息和趋势。
在计算累计百分比时,还有一些有用的技巧和建议,可以帮助我们更好地使用Tableau,并获得更准确和有用的分析结果。以下是一些实用的技巧和建议:
月度级别的时间粒度,而不是日或周粒度。
总之,在Tableau中计算累计百分比可以帮助我们更好地理解数据的趋势和变化,从而做出更准确和有用的分析和决策。通过正确地准备数据、选择适当的计算函数和可视化类型,并了解一些实用的技巧和建议,我们可以更好地使用Tableau,并获得更好的分析结果。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23