登录
首页大数据时代如何理解卷积神经网络中的卷积?
如何理解卷积神经网络中的卷积?
2023-03-31
收藏

卷积神经网络(Convolutional Neural Network,简称CNN)是一类常用于图像识别、语音识别等领域的深度学习模型。其中最重要的部分就是卷积操作。那么,什么是卷积操作呢?

在介绍卷积之前,我们需要先了解一下信号处理中的卷积。信号处理中的卷积是指将两个函数进行加权平均得到一个新的函数。具体而言,如果有两个函数$f$和$g$,它们的卷积是这样定义的:

$$int_{-infty}^infty f(tau)g(t-tau)dtau$$

这个式子看起来比较抽象,但可以通过一个例子来理解。假设我们有一个长度为$5$的离散信号序列$x=[1,2,3,4,5]$,另一个信号序列$h=[1,1,1]$,则$h$的卷积核为:

$$h=[1,1,1] Rightarrow h[-1]=h[0]=h[1]=1, h[2]=0, h[3]=h[4]=...=0$$

我们可以将$x$和$h$像这样摆放:

$$x = [1, 2, 3, 4, 5]$$ $$h = [1, 1, 1, 0, 0]$$

然后,我们将$h$翻转过来,再将它与$x$对齐,从第一个数开始相乘,求和并得到新序列的第一个元素;接着,我们将$h$向右移动一个单位,再次将它与$x$对齐,并得到新序列的第二个元素……直到$h$覆盖完整个$x$序列,得到如下结果:

$$y=[3,6,9,12,15,0,0]$$

在卷积神经网络中,卷积操作基本上是按照这个流程进行的。不同之处在于,我们通常使用多个卷积核来提取图像的特征。每个卷积核都是一个小的矩阵,例如$3 times 3$或$5 times 5$,它们会滑动在输入图像的每个位置,计算某个输出特征图上的一个像素值。

假设我们有一个$5 times 5$的输入图像$I$,和一个大小为$3 times 3$的卷积核$K$,则卷积操作可以表示为:

$$O_{i,j}= sum_msum_n I_{i+m,j+n}K_{m,n}$$

其中,$O$是输出特征图,$I$是输入图像,$K$是卷积核,$i,j$是输出特征图上的位置,$m,n$是卷积核内的位置。这个式子表示,在输出特征图上的每个位置$(i,j)$,都会以此滑动$K$,计算输入图像$I$上所有与$K$重合的位置处的像素值与$K$内的系数的乘积,最后将这些乘积相加得到输出特征图上相应位置的像素值。

这个过程可以用下图表示:

卷积过程

在实际应用中,我们通常使用多个卷积核进行卷积操作。这些卷积核可以对输入图像进行不同的特征提取,例如检测边缘、角点、纹理等。因此,一个卷积层通常会产生多个特征图,每个特征图对应一个卷

积核。在深度学习中,这些卷积核是通过反向传播算法自适应学习得到的,以最大化网络的分类性能。

除了卷积操作,卷积神经网络还包括池化、激活函数等操作。其中,池化操作用于降低特征图的尺寸和维度,减少计算量并增强模型的鲁棒性;激活函数则用于引入非线性变换,使网络能够学习更加复杂的特征

总之,卷积神经网络中的卷积操作是一种基本的特征提取方式,它可以将输入图像中的局部信息进行组合,从而得到更加丰富的特征表示。卷积神经网络的设计和训练都是围绕着卷积操作展开的,因此对卷积操作的理解至关重要。

数据分析咨询请扫描二维码

客服在线
立即咨询