京公网安备 11010802034615号
经营许可证编号:京B2-20210330
WSL2(Windows Subsystem for Linux)是一种在 Windows 10 上运行 Linux 内核的子系统,可以让用户在 Windows 系统中使用 Linux 工具和命令行。TensorFlow 是一个广泛使用的深度学习平台,在 NVIDIA GPU 上使用 TensorFlow 可以加速模型训练。本文将介绍如何在 WSL2 上搭建基于 TensorFlow GPU 的深度学习环境。
在 Windows 10 中启用 WSL2 需要满足以下条件:
按照以下步骤启用 WSL2:
打开 PowerShell 作为管理员。
运行以下命令来启用虚拟化功能:
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
下载并安装 WSL2 Linux 内核更新程序:
将 WSL2 设置为默认版本:
wsl --set-default-version 2
在 Microsoft Store 中下载并安装 Ubuntu 或其他喜欢的 Linux 发行版。
启动 Ubuntu 并设置用户名和密码,完成 WSL2 安装。
由于 TensorFlow 使用 NVIDIA GPU 加速,需要先在 WSL2 中安装 NVIDIA 驱动程序。需要注意的是,WSL2 不支持直接访问 GPU,需要安装 NVIDIA 驱动程序和 CUDA 工具包,然后通过 CUDA 提供的 API 调用 GPU。
下载适用于 Linux 的 NVIDIA 驱动程序:
安装驱动程序:
CUDA(Compute Unified Device Architecture)是 NVIDIA 开发的用于 GPU 加速计算的平台,包括 C 编程语言扩展和运行时库。cuDNN(CUDA Deep Neural Network library)是 NVIDIA 开发的用于深度学习的 GPU 加速库。
下载适用于 Linux 的 CUDA 工具包:
安装 CUDA 工具包:
在 Ubuntu 中打开终端,切换到 .deb 文件所在目录。
运行以下命令安装 CUDA 工具包:
sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda
添加环境变量:
运行以下命令打开 .bashrc 文件:
nano ~/.bashrc
``
在文件末尾添加以下内容:
export PATH=/usr/local/cuda-11.6/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64:$LD_LIBRARY_PATH
保存并退出 .bashrc 文件,运行以下命令更新环境变量:
source ~/.bashrc
安装 cuDNN 库:
在 Ubuntu 中打开终端,切换到 .deb 文件所在目录。
运行以下命令安装 cuDNN 库:
sudo dpkg -i libcudnn8_8.2.4.15-1+cuda11.6_amd64.deb
在 Ubuntu 中打开终端,运行以下命令安装 TensorFlow GPU:
pip3 install tensorflow-gpu
验证 TensorFlow 是否正确安装:
在 Python 中运行以下代码:
import tensorflow as tf
print(tf.__version__)
如果输出版本号,则表示 TensorFlow GPU 已成功安装。
本文介绍了如何在 WSL2 上搭建基于 TensorFlow GPU 的深度学习环境。需要先安装 WSL2,然后安装 NVIDIA 驱动程序和 CUDA 工具包,最后安装 cuDNN 库和 TensorFlow GPU。安装过程可能会遇到某些问题,需要根据具体情况进行调试和解决。如果您是第一次使用深度学习平台,可以参考 TensorFlow 的官方文档学习相关知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23