京公网安备 11010802034615号
经营许可证编号:京B2-20210330
李克特量表(Likert scale)是一种常见的调查问卷设计方法,用于评估受访者对某种观点、态度或信念的赞同程度。该量表通常由若干个陈述性语句组成,被要求在一个有序的数字序列上选择自己的回答。
SPSS是一种功能强大的统计分析软件,可以用于处理和分析各种类型的数据。以下是使用SPSS进行李克特量表分析的步骤:
准备数据 将收集到的李克特量表数据输入SPSS中。每个受访者的回答需要被编码为数字,例如:1表示“非常不同意”,2表示“不同意”,3表示“中等程度上同意”,4表示“同意”,5表示“非常同意”。
创建变量标签 为了方便后续分析,需要为每个问题创建一个变量标签。这样可以更好地描述每个问题,并且能够更轻松地查询和识别变量。
计算总分 将每个受访者的分数相加,得出总分。这样可以看到每个受访者对整个问题的总体看法。
描述性统计分析 使用SPSS的描述性统计分析功能,可以获得关于整个样本的基本信息。这包括平均值、标准差、最小值、最大值等。
因素分析 如果有多个问题,在分析之前可以使用因素分析来确定潜在的因素。因素分析可以帮助我们找到相关问题之间的共同点,并使结果更加简洁明了。
可靠性分析 使用可靠性分析可以评估李克特量表的内部一致性。这可以通过Cronbach's alpha系数来完成。Cronbach's alpha系数越高,说明该量表的一致性越好。
T检验或ANOVA分析 T检验或ANOVA分析可以帮助我们比较两个或多个组之间的平均分数是否显著不同。例如,我们可以使用此测试比较男性和女性对某个问题的看法是否有所差异。
相关性分析 如果有多个问题,则可以使用相关性分析来看看它们之间的关系。这可以通过皮尔逊相关系数或斯皮尔曼等级相关系数来完成。这些系数将告诉我们哪些问题彼此相关,从而可能导致更深入的研究。
总之,使用SPSS可以帮助我们更好地理解李克特量表的结果。除了上述步骤外,还有其他许多分析工具可以使用,具体取决于您的研究目的和问题。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30