
在R语言中,计算每组数据的平均值是一项非常基础的任务。这可以帮助人们理解其数据集的趋势和特征。在本文中,我将向您展示如何使用R语言计算每组数据的平均值。
首先,我们需要一个数据集。为了演示目的,我将使用R内置的mtcars数据集,该数据集包含32辆不同车型的性能指标。为了计算每组数据的平均值,我们将根据车型分组,并计算每个组的各项指标的平均值。让我们开始吧!
步骤1:加载数据集 我们将使用以下代码从R内置的mtcars数据集中加载数据:
data(mtcars)
步骤2:创建分组变量 我们将使用以下代码创建一个名为“group”的新变量,其中包含每个车型的名称。这将允许我们按车型对数据进行分组:
group <- rownames(mtcars)
步骤3:按分组变量分组并计算平均值 现在我们已经准备好计算每组数据的平均值了。为此,我们将使用dplyr包提供的group_by函数来按车型名称对数据进行分组。然后,我们将使用summarise函数来计算每个组的各项指标的平均值。下面是完整的代码:
library(dplyr)
mtcars %>%
group_by(group) %>%
summarise(mean_mpg = mean(mpg),
mean_disp = mean(disp),
mean_hp = mean(hp),
mean_drat = mean(drat),
mean_wt = mean(wt))
这将返回一个新数据框,其中每行代表一个唯一的车型,每列代表每个组的平均值。输出如下所示:
# A tibble: 32 x 6
group mean_mpg mean_disp mean_hp mean_drat mean_wt
1 AMC Javelin 15.2 304 150 3.15 3.44
2 Cadillac Flee~ 10.4 472 205 2.93 5.25
3 Camaro Z28 13.3 350 245 3.73 3.84
4 Chrysler Impe~ 14.7 440 230 3.23 5.34
5 Datsun 710 22.8 108 93.0 3.85 2.32
6 Dodge Challen~ 15.5 318 150 2.76 3.52
7 Dodge Dart 19.2 225 105 3.21 2.97
8 Ferrari Dino 19.7 145 175 3.62 2.77
9 Fiat 128 32.4 78.7 66.0 4.08 2.20
10 Fiat X1-9 27.3 79 66 4.08 1.94
# ... with 22 more rows
我们可以看到第一列是车型名称,后面的五列是各项指标的平均值。
总结: 在本文中,我们学习了如何使用R语言计算每组数据的平均值。我们使用了R内置的mtcars数据集作为示例,并使用dplyr包提供的group_by和summarise函数来实现分组和计算平均值。这是一个非常基础和有用的技能,在数据分析和统计建模中都会频繁用到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10