
想了解2021年新数据自由职业者的数据分析咨询率吗?作为一名数据分析自由职业者,你准备好提高你的费率了吗?你来对地方了。
继续阅读,学习我的最佳策略,以帮助你作为一个数据分析自由职业者或顾问的2倍你的速度。
事实是--如果你正在阅读这篇文章,并且已经以自由职业者的身份进行某种数据分析工作,你很可能收费不够。
在我指导数据专业人员建立6位数的数据业务的工作中,我的许多客户来找我收费远低于他们应该收费的水平。虽然许多人最终获得了6位数的合同(10%的导师服务客户在与我签约的前7个月就有了!),但他们通常是从苦苦挣扎的自由职业者开始的。
所以,你可以说我对帮助数据自由职业者在他们的业务中取得一些严重的提升略知一二!
让我们进入我的最佳建议如何大幅提高您的利率,尽快在明天。
当我在这篇文章中谈到数据分析咨询时,我指的是销售数据分析服务--这很容易被营销为以下内容:
关于数据分析服务提供的更详尽的列表,请在这里查看DwellTec如何分解他们的数据分析服务类型。
但老实说,我与您分享的方法也适用于其他类型的数据服务。因此,无论您提供A/B测试、数据挖掘、数据工程、数据科学还是机器学习,您都可以将这些定价策略应用于您的数据业务,并看到令人难以置信的结果。
这个问题的答案很简单。
大多数数据自由职业者的收费都不够。
让我们看看这些数字--无论是西方还是非西方自由职业者。
从我们对各种数据自由职业者UpWork简介的调查中,我们发现有经验的美国自由职业者正在以每小时28美元到250美元的速度出售他们的数据专业知识。
但平均费率只有97.50美元--这意味着美国大多数有经验的数据分析自由职业者每小时收费不到100美元。
现在,让我们谈谈非西方自由职业者。根据我们2021年的Upwork研究,经验丰富的印度自由职业者正在以每小时5美元至199美元的速度出售他们的数据专业知识。
但平均价格为37.50美元--这意味着印度大多数有经验的数据分析自由职业者每小时的收费不到40美元。
这里有两个大错误。
因此,如果这些利率被低估了,数据分析自由职业者应该瞄准什么样的范围?
让我们看看作为一个数据自由职业者,你实际上需要收取多少钱来经营一个有利可图的业务。
最简单的经验法则是,你需要收取员工实得工资的两倍。
这有两个很大的原因。
让我们探索2021年新数据自由职业者的数据分析咨询率!我要讨论的第一类自由职业者是西方经济体的新数据自由职业者。
作为一个新的数据自由职业者,您很可能已经参加了一些数据实现课程,您已经建立了一些投资组合,但仍然没有建立起来。你还没有完全建立起你的在线可信度,你也没有那些外部基准来验证你可以交付结果。
如果您属于此类,您希望至少收取$150/小时。
如果你是一个生活在非西方经济体的新的数据自由职业者,比如你在印度或菲律宾,你会希望至少100美元/小时。
现在,让我们假设你有一个kickass投资组合,胡言乱语的证明,你所在领域的学位,以及一些外部实体来验证你可以得到你承诺的结果。在这种情况下,您需要收取300美元/小时的最低费用。
如果你在一个非西方经济体,这对你来说可能有点棘手,但我仍然会努力争取300美元/小时。为了控制这些溢价率,你需要确保你的品牌是符合鼻烟和满足西方客户的期望。你也想花时间展示证明和评论,证明你有能力为你的客户获得令人难以置信的结果。
为了建立一个成功的自由职业者数据业务,您必须(我重复一遍,必须!)遵循这两条黄金法则:
你很可能在过去被教导用你的小时费率给客户报价。是时候完全忘记那个建议了。
相反,您将提出一个包价格。这是对某些交付成果或实现某些项目里程碑的固定费用。
既然我们已经探索了2021年新数据自由职业者的数据分析咨询费率,让我们讨论如何打包您的服务。为了创建完美的软件包,您需要遵循以下步骤。
当然,你会想弄清楚你交付包裹需要多长时间。这就是你如何确保你至少赚300美元/小时的方法。
现在,你可能会想,“这听起来很棒,但是我在哪里可以找到客户来购买这个包呢?”
问得好!
至于在哪里卖你的包裹,我会劝阻你去像Upwork这样的地方。通常,像这样的自由职业者市场变成了一场“向底部竞争”,这使得自由职业者很难收取高价。
当然,你会想在你的网站上发布你的包裹,然后尝试通过社交媒体来推动流量到你的网站。你甚至可以在你的社交媒体渠道上制作一个关于如何与你合作的专题帖子或亮点,并链接到你的网站以了解更多信息。关于如何让高薪客户进入您的数据业务的更多策略,请务必查看这篇文章。
我希望这篇文章为你提供了一些关于2021年新的数据自由职业者以及有经验的人的数据分析咨询率的更清晰的信息!请记住:通过从每小时的定价结构转换到高级数据服务包,您将能够迅速扩大您的业务规模,并在本周内将您的费率翻倍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22