
想了解2021年新数据自由职业者的数据分析咨询率吗?作为一名数据分析自由职业者,你准备好提高你的费率了吗?你来对地方了。
继续阅读,学习我的最佳策略,以帮助你作为一个数据分析自由职业者或顾问的2倍你的速度。
事实是--如果你正在阅读这篇文章,并且已经以自由职业者的身份进行某种数据分析工作,你很可能收费不够。
在我指导数据专业人员建立6位数的数据业务的工作中,我的许多客户来找我收费远低于他们应该收费的水平。虽然许多人最终获得了6位数的合同(10%的导师服务客户在与我签约的前7个月就有了!),但他们通常是从苦苦挣扎的自由职业者开始的。
所以,你可以说我对帮助数据自由职业者在他们的业务中取得一些严重的提升略知一二!
让我们进入我的最佳建议如何大幅提高您的利率,尽快在明天。
当我在这篇文章中谈到数据分析咨询时,我指的是销售数据分析服务--这很容易被营销为以下内容:
关于数据分析服务提供的更详尽的列表,请在这里查看DwellTec如何分解他们的数据分析服务类型。
但老实说,我与您分享的方法也适用于其他类型的数据服务。因此,无论您提供A/B测试、数据挖掘、数据工程、数据科学还是机器学习,您都可以将这些定价策略应用于您的数据业务,并看到令人难以置信的结果。
这个问题的答案很简单。
大多数数据自由职业者的收费都不够。
让我们看看这些数字--无论是西方还是非西方自由职业者。
从我们对各种数据自由职业者UpWork简介的调查中,我们发现有经验的美国自由职业者正在以每小时28美元到250美元的速度出售他们的数据专业知识。
但平均费率只有97.50美元--这意味着美国大多数有经验的数据分析自由职业者每小时收费不到100美元。
现在,让我们谈谈非西方自由职业者。根据我们2021年的Upwork研究,经验丰富的印度自由职业者正在以每小时5美元至199美元的速度出售他们的数据专业知识。
但平均价格为37.50美元--这意味着印度大多数有经验的数据分析自由职业者每小时的收费不到40美元。
这里有两个大错误。
因此,如果这些利率被低估了,数据分析自由职业者应该瞄准什么样的范围?
让我们看看作为一个数据自由职业者,你实际上需要收取多少钱来经营一个有利可图的业务。
最简单的经验法则是,你需要收取员工实得工资的两倍。
这有两个很大的原因。
让我们探索2021年新数据自由职业者的数据分析咨询率!我要讨论的第一类自由职业者是西方经济体的新数据自由职业者。
作为一个新的数据自由职业者,您很可能已经参加了一些数据实现课程,您已经建立了一些投资组合,但仍然没有建立起来。你还没有完全建立起你的在线可信度,你也没有那些外部基准来验证你可以交付结果。
如果您属于此类,您希望至少收取$150/小时。
如果你是一个生活在非西方经济体的新的数据自由职业者,比如你在印度或菲律宾,你会希望至少100美元/小时。
现在,让我们假设你有一个kickass投资组合,胡言乱语的证明,你所在领域的学位,以及一些外部实体来验证你可以得到你承诺的结果。在这种情况下,您需要收取300美元/小时的最低费用。
如果你在一个非西方经济体,这对你来说可能有点棘手,但我仍然会努力争取300美元/小时。为了控制这些溢价率,你需要确保你的品牌是符合鼻烟和满足西方客户的期望。你也想花时间展示证明和评论,证明你有能力为你的客户获得令人难以置信的结果。
为了建立一个成功的自由职业者数据业务,您必须(我重复一遍,必须!)遵循这两条黄金法则:
你很可能在过去被教导用你的小时费率给客户报价。是时候完全忘记那个建议了。
相反,您将提出一个包价格。这是对某些交付成果或实现某些项目里程碑的固定费用。
既然我们已经探索了2021年新数据自由职业者的数据分析咨询费率,让我们讨论如何打包您的服务。为了创建完美的软件包,您需要遵循以下步骤。
当然,你会想弄清楚你交付包裹需要多长时间。这就是你如何确保你至少赚300美元/小时的方法。
现在,你可能会想,“这听起来很棒,但是我在哪里可以找到客户来购买这个包呢?”
问得好!
至于在哪里卖你的包裹,我会劝阻你去像Upwork这样的地方。通常,像这样的自由职业者市场变成了一场“向底部竞争”,这使得自由职业者很难收取高价。
当然,你会想在你的网站上发布你的包裹,然后尝试通过社交媒体来推动流量到你的网站。你甚至可以在你的社交媒体渠道上制作一个关于如何与你合作的专题帖子或亮点,并链接到你的网站以了解更多信息。关于如何让高薪客户进入您的数据业务的更多策略,请务必查看这篇文章。
我希望这篇文章为你提供了一些关于2021年新的数据自由职业者以及有经验的人的数据分析咨询率的更清晰的信息!请记住:通过从每小时的定价结构转换到高级数据服务包,您将能够迅速扩大您的业务规模,并在本周内将您的费率翻倍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08