京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想了解2021年新数据自由职业者的数据分析咨询率吗?作为一名数据分析自由职业者,你准备好提高你的费率了吗?你来对地方了。
继续阅读,学习我的最佳策略,以帮助你作为一个数据分析自由职业者或顾问的2倍你的速度。
事实是--如果你正在阅读这篇文章,并且已经以自由职业者的身份进行某种数据分析工作,你很可能收费不够。
在我指导数据专业人员建立6位数的数据业务的工作中,我的许多客户来找我收费远低于他们应该收费的水平。虽然许多人最终获得了6位数的合同(10%的导师服务客户在与我签约的前7个月就有了!),但他们通常是从苦苦挣扎的自由职业者开始的。
所以,你可以说我对帮助数据自由职业者在他们的业务中取得一些严重的提升略知一二!
让我们进入我的最佳建议如何大幅提高您的利率,尽快在明天。
当我在这篇文章中谈到数据分析咨询时,我指的是销售数据分析服务--这很容易被营销为以下内容:
关于数据分析服务提供的更详尽的列表,请在这里查看DwellTec如何分解他们的数据分析服务类型。
但老实说,我与您分享的方法也适用于其他类型的数据服务。因此,无论您提供A/B测试、数据挖掘、数据工程、数据科学还是机器学习,您都可以将这些定价策略应用于您的数据业务,并看到令人难以置信的结果。
这个问题的答案很简单。
大多数数据自由职业者的收费都不够。
让我们看看这些数字--无论是西方还是非西方自由职业者。
从我们对各种数据自由职业者UpWork简介的调查中,我们发现有经验的美国自由职业者正在以每小时28美元到250美元的速度出售他们的数据专业知识。
但平均费率只有97.50美元--这意味着美国大多数有经验的数据分析自由职业者每小时收费不到100美元。
现在,让我们谈谈非西方自由职业者。根据我们2021年的Upwork研究,经验丰富的印度自由职业者正在以每小时5美元至199美元的速度出售他们的数据专业知识。
但平均价格为37.50美元--这意味着印度大多数有经验的数据分析自由职业者每小时的收费不到40美元。
这里有两个大错误。
因此,如果这些利率被低估了,数据分析自由职业者应该瞄准什么样的范围?
让我们看看作为一个数据自由职业者,你实际上需要收取多少钱来经营一个有利可图的业务。
最简单的经验法则是,你需要收取员工实得工资的两倍。
这有两个很大的原因。
让我们探索2021年新数据自由职业者的数据分析咨询率!我要讨论的第一类自由职业者是西方经济体的新数据自由职业者。
作为一个新的数据自由职业者,您很可能已经参加了一些数据实现课程,您已经建立了一些投资组合,但仍然没有建立起来。你还没有完全建立起你的在线可信度,你也没有那些外部基准来验证你可以交付结果。
如果您属于此类,您希望至少收取$150/小时。
如果你是一个生活在非西方经济体的新的数据自由职业者,比如你在印度或菲律宾,你会希望至少100美元/小时。
现在,让我们假设你有一个kickass投资组合,胡言乱语的证明,你所在领域的学位,以及一些外部实体来验证你可以得到你承诺的结果。在这种情况下,您需要收取300美元/小时的最低费用。
如果你在一个非西方经济体,这对你来说可能有点棘手,但我仍然会努力争取300美元/小时。为了控制这些溢价率,你需要确保你的品牌是符合鼻烟和满足西方客户的期望。你也想花时间展示证明和评论,证明你有能力为你的客户获得令人难以置信的结果。
为了建立一个成功的自由职业者数据业务,您必须(我重复一遍,必须!)遵循这两条黄金法则:
你很可能在过去被教导用你的小时费率给客户报价。是时候完全忘记那个建议了。
相反,您将提出一个包价格。这是对某些交付成果或实现某些项目里程碑的固定费用。
既然我们已经探索了2021年新数据自由职业者的数据分析咨询费率,让我们讨论如何打包您的服务。为了创建完美的软件包,您需要遵循以下步骤。
当然,你会想弄清楚你交付包裹需要多长时间。这就是你如何确保你至少赚300美元/小时的方法。
现在,你可能会想,“这听起来很棒,但是我在哪里可以找到客户来购买这个包呢?”
问得好!
至于在哪里卖你的包裹,我会劝阻你去像Upwork这样的地方。通常,像这样的自由职业者市场变成了一场“向底部竞争”,这使得自由职业者很难收取高价。
当然,你会想在你的网站上发布你的包裹,然后尝试通过社交媒体来推动流量到你的网站。你甚至可以在你的社交媒体渠道上制作一个关于如何与你合作的专题帖子或亮点,并链接到你的网站以了解更多信息。关于如何让高薪客户进入您的数据业务的更多策略,请务必查看这篇文章。
我希望这篇文章为你提供了一些关于2021年新的数据自由职业者以及有经验的人的数据分析咨询率的更清晰的信息!请记住:通过从每小时的定价结构转换到高级数据服务包,您将能够迅速扩大您的业务规模,并在本周内将您的费率翻倍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09