京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们每个人都需要一份简历来展示我们的技能和经验,但我们要付出多少努力才能让它产生影响力。不可否认,简历在我们的求职过程中起着关键作用。本文将探讨一些简单的策略来显著改善数据科学简历的呈现方式和内容。
获得一份数据科学工作变得非常竞争,尽管机会的数量是历史上最高的,但申请这些工作的人数也非常高。
例如,下面是LinkedIn上一个职位公告的截图,这个职位公告总共有1200+个视图,如果我们考虑大约十分之一的人申请这个职位,那么总共有120+个申请,这只是申请职位的一种方式,会有人从其他来源申请这个职位,通过引用和直接申请,因此申请的总数大约是200+个。同样的逻辑适用于任何数据科学工作职位,因此简历在入围中发挥着至关重要的作用。
在这篇文章中,我将指导你如何建立一份高影响力的简历,帮助你获得工作申请的入围名单。本文涉及的主题包括,
如果您对视频格式有偏好,请查看此处。
大多数求职申请都接受pdf和word格式的简历。但我建议你坚持使用pdf格式,因为这样可以保证格式的保留,也就是说,招聘人员看简历的方式与你看简历的方式相同。
个人简介是简历的关键,把它看成是一个电梯式的推销。它应该是有说服力的,应该包括你是谁,你的技能和长处是什么等信息。简历的这一部分将是第一印象的主要驱动力,也会影响招聘人员的决定,因此要花足够的时间确保它包括关于你的关键细节。
我的人在简历的开头包括职业目标。我个人主张把职业目标从简历中删除,而是用这个空间来做一个更好的个人简介。因为大多数招聘都是基于你的成就、优势和技能,而不是基于你的抱负。所以,做一个明智的决定,有效地利用你简历中的内容,尤其是开头。
确保你在简历中包括的细节都是要点,无论是个人简介还是专业/项目经验。很难把注意力集中在一个长段落上,因此保持它的简单和要点可以确保更好的可读性,如下图所示。
尽量将每个项目符号限制在2-3行,并将关键短语加粗,因为这有助于快速扫描。
简历的内容应该是一致的格式,标题,副标题,要点,以及简历中的其他文字都应该是一致的格式。下面是一些可以确保一致性的东西,
经常检查排版和语法错误,因为它们可能会让招聘人员望而却步。虽然排版和语法错误很有可能被忽视,但当被发现时,它们会发出错误的信号,
你的联系方式对招聘人员联系你很重要,因此要确保仔细检查你的详细信息。许多人开始根据同事或朋友的简历编辑简历,在这种情况下,确保在编辑文本时也编辑了超链接。就像在编辑电子邮件id时一样,确保超链接中的电子邮件也被编辑过。
确保你的简历有链接到你的LinkedIn个人资料、git存储库以及其他网站或像Kaggle这样的你想要向招聘人员突出的个人资料
当你在一份工作申请中与很多人竞争时,像定制这样的简单事情可以成为一个与众不同的因素,可以帮助你获得招聘人员的立即关注。当我说根据职位发布定制你的简历时,并不意味着对你申请的每一份工作都完全重写你的简历,而只是做一些小的调整,以确保你的简历突出工作的要求和期望。
自定义简历有助于
简历中可以自定义的组件很少,它们是
这是一个神奇的公式,有助于将你的成就转化为一个高影响力的声明。它最早是由拉兹洛·博克在他的艺术作品中介绍的。这是一个非常有效的技巧,可以用来写一份有影响力的简历。这个公式意味着,
通过执行“z”完成了用“y”衡量的“x”
我将用一些简单的例子来准确地解释这个公式如何应用在你的数据科学简历中。
示例1:
“构建推荐系统”
这是一个简单的声明,一点也不吸引人,因为它没有确切地提到用例的影响。我们可以通过以下语句包含其影响的详细信息来改进它,
“构建了一个提升收入10%的推荐系统”
现在,这比前面的声明要好得多,但是可以通过使用下面的Google X-Y-Z公式来进一步改进(公式的X、Y和Z在下面突出显示)
“构建了推荐系统(X),通过使用协同过滤算法(Z)帮助将提高了平台上的客户参与度(Y)”
示例2:
“参加了卡格尔比赛”
这又是一个简单的陈述,只是说你参加了kaggle比赛,但没有谈论你的表现,因此可以通过包括以下一些细节来改进,
“在卡格尔比赛中获得第20名”
这现在更好了,但我们可以通过使用谷歌的X-Y-Z公式使其更具影响力,
“参加了的Kaggle竞赛(X),并在1250个团队(Y)中以第20名
现在,用这个公式将你的成就转化为更有力的陈述。
有很多很棒的工具可以帮助你建立一份令人惊叹的简历。下面是我最喜欢的两个,
这些工具对创建令人惊叹的简历非常有帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26