
我们每个人都需要一份简历来展示我们的技能和经验,但我们要付出多少努力才能让它产生影响力。不可否认,简历在我们的求职过程中起着关键作用。本文将探讨一些简单的策略来显著改善数据科学简历的呈现方式和内容。
获得一份数据科学工作变得非常竞争,尽管机会的数量是历史上最高的,但申请这些工作的人数也非常高。
例如,下面是LinkedIn上一个职位公告的截图,这个职位公告总共有1200+个视图,如果我们考虑大约十分之一的人申请这个职位,那么总共有120+个申请,这只是申请职位的一种方式,会有人从其他来源申请这个职位,通过引用和直接申请,因此申请的总数大约是200+个。同样的逻辑适用于任何数据科学工作职位,因此简历在入围中发挥着至关重要的作用。
在这篇文章中,我将指导你如何建立一份高影响力的简历,帮助你获得工作申请的入围名单。本文涉及的主题包括,
如果您对视频格式有偏好,请查看此处。
大多数求职申请都接受pdf和word格式的简历。但我建议你坚持使用pdf格式,因为这样可以保证格式的保留,也就是说,招聘人员看简历的方式与你看简历的方式相同。
个人简介是简历的关键,把它看成是一个电梯式的推销。它应该是有说服力的,应该包括你是谁,你的技能和长处是什么等信息。简历的这一部分将是第一印象的主要驱动力,也会影响招聘人员的决定,因此要花足够的时间确保它包括关于你的关键细节。
我的人在简历的开头包括职业目标。我个人主张把职业目标从简历中删除,而是用这个空间来做一个更好的个人简介。因为大多数招聘都是基于你的成就、优势和技能,而不是基于你的抱负。所以,做一个明智的决定,有效地利用你简历中的内容,尤其是开头。
确保你在简历中包括的细节都是要点,无论是个人简介还是专业/项目经验。很难把注意力集中在一个长段落上,因此保持它的简单和要点可以确保更好的可读性,如下图所示。
尽量将每个项目符号限制在2-3行,并将关键短语加粗,因为这有助于快速扫描。
简历的内容应该是一致的格式,标题,副标题,要点,以及简历中的其他文字都应该是一致的格式。下面是一些可以确保一致性的东西,
经常检查排版和语法错误,因为它们可能会让招聘人员望而却步。虽然排版和语法错误很有可能被忽视,但当被发现时,它们会发出错误的信号,
你的联系方式对招聘人员联系你很重要,因此要确保仔细检查你的详细信息。许多人开始根据同事或朋友的简历编辑简历,在这种情况下,确保在编辑文本时也编辑了超链接。就像在编辑电子邮件id时一样,确保超链接中的电子邮件也被编辑过。
确保你的简历有链接到你的LinkedIn个人资料、git存储库以及其他网站或像Kaggle这样的你想要向招聘人员突出的个人资料
当你在一份工作申请中与很多人竞争时,像定制这样的简单事情可以成为一个与众不同的因素,可以帮助你获得招聘人员的立即关注。当我说根据职位发布定制你的简历时,并不意味着对你申请的每一份工作都完全重写你的简历,而只是做一些小的调整,以确保你的简历突出工作的要求和期望。
自定义简历有助于
简历中可以自定义的组件很少,它们是
这是一个神奇的公式,有助于将你的成就转化为一个高影响力的声明。它最早是由拉兹洛·博克在他的艺术作品中介绍的。这是一个非常有效的技巧,可以用来写一份有影响力的简历。这个公式意味着,
通过执行“z”完成了用“y”衡量的“x”
我将用一些简单的例子来准确地解释这个公式如何应用在你的数据科学简历中。
示例1:
“构建推荐系统”
这是一个简单的声明,一点也不吸引人,因为它没有确切地提到用例的影响。我们可以通过以下语句包含其影响的详细信息来改进它,
“构建了一个提升收入10%的推荐系统”
现在,这比前面的声明要好得多,但是可以通过使用下面的Google X-Y-Z公式来进一步改进(公式的X、Y和Z在下面突出显示)
“构建了推荐系统(X),通过使用协同过滤算法(Z)帮助将提高了平台上的客户参与度(Y)”
示例2:
“参加了卡格尔比赛”
这又是一个简单的陈述,只是说你参加了kaggle比赛,但没有谈论你的表现,因此可以通过包括以下一些细节来改进,
“在卡格尔比赛中获得第20名”
这现在更好了,但我们可以通过使用谷歌的X-Y-Z公式使其更具影响力,
“参加了的Kaggle竞赛(X),并在1250个团队(Y)中以第20名
现在,用这个公式将你的成就转化为更有力的陈述。
有很多很棒的工具可以帮助你建立一份令人惊叹的简历。下面是我最喜欢的两个,
这些工具对创建令人惊叹的简历非常有帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20