
我最近写了一篇题为数据科学家、数据工程师和其他数据职业的文章,解释说,在这篇文章中,我尽了最大努力简明扼要地定义和区分了五种流行的数据相关职业。在那篇文章中,每一个职业都得到了非常高水平的单句总结,数据科学家被描述如下,以供参考:
数据科学家主要关注数据、从数据中提取的洞察力以及数据可以讲述的故事。
除了我为每个职业写的额外的几个段落之外,我试图提出一个单一的总体差异特性,其中五个可以一起工作成一个流程图,也许由一个有抱负的数据专业人员使用,以帮助确定哪个职业可能最适合他们。
我收到了一些读者的反馈,这些反馈表明,我过于关注预测分析,将其作为数据科学家职业的一个定义性特征,我对这一特征的依赖可能会让人觉得数据科学家比其他任何事情都更擅长预测分析--而其他数据专业人员可能根本不会这样做。
这种建设性的批评很自然地让我思考:数据科学家与其他数据专业人员的区别还在于什么?数据科学家使用的技术技能、特定的技术语言、系统和工具很多。数据科学家--以及其他各种专业人员--也有许多软技能,用于在他们的职业生涯中出类拔萃。但是,成功的数据科学家的一些固有特征是什么,要么是随着数据科学家进入这个行业而来的,要么是他们进入这个行业后可以发展的?
以下是我提出的五件事,作为一个整体,有助于将数据科学家与其他职业区分开来。
让我们首先指出,所有的数据科学家角色都是不同的,但它们都有一些共同的连接线程,希望这些点有助于连接这些线程中的一些线程。
这个特性的焦点是我受到一些抨击的原因。然而,我要在这里加倍说明,预测分析思维模式是数据科学家的主要定义特征之一,也许比任何其他特征都更重要。它是唯一的定义特性吗?当然不。应该在流程图中使用它来将数据科学家从所有其他职业中分离出来吗?回想起来,不,可能不。
数据科学家进行预测分析吗?绝对。非数据科学家也是吗?当然。但是,如果我把data Scientisht放在预测分析的一端,而把<在这里插入其他数据专业人员>放在另一端,我希望data Scientisht总是能落地。
但这不仅仅是预测分析在特定情况下的应用;这是一种心态。这不仅仅是一种分析性的心态(减去预测性的),而是一种总是考虑如何利用我们已经知道的东西来发现我们还不知道的东西的心态。这表明预测性是方程的一个组成部分。
在我看来,数据科学家的头脑中不仅仅有预测,但在这种心态下工作是定义角色的特征之一,也是许多其他职业,无论是与数据相关的还是其他职业,都不具备的特征。其他确实有这种特点的人可能会把它放在对该职业有价值的人名单的后面。
显然,利用我们所知道的来找出我们所不知道的是不够的。数据科学家必须对他们有一种其他角色不一定需要有的好奇心(注意,我没有说其他人绝对不有这种好奇心)。好奇心几乎是预测分析心态的另一面:当预测分析心态寻求用y解决x时,好奇心将首先确定y是什么。
天生的好奇心是成为一个有用的数据科学家所必需的,故事结束了。如果你是那种早上醒来一整天都不去想宇宙奇迹的人--在任何层面上--数据科学都不适合你。
在杀死它之前,好奇心是这只猫作为一名成功的数据科学家的漫长而成功的职业生涯的原因。
这里有一个深刻的哲理:世界是一个复杂的地方。一切都以某种方式联系在一起,远远超出了显而易见的范围,这导致了现实世界的层层复杂性。复杂系统与其他复杂系统相互作用,产生自己的额外复杂系统,宇宙也是如此。这个复杂的游戏不仅仅是认识到大局:大局在什么地方适合大局,等等?
但这不仅仅是哲学上的。这个现实世界的无限复杂网络被数据科学家所认识。他们感兴趣的是了解尽可能多的相关互动,无论是潜在的还是其他的,因为他们解决了他们的问题。他们寻找与情况相关的已知未知、已知未知和未知未知,理解任何给定的变化都可能在其他地方产生意想不到的后果。
数据科学家的工作是尽可能多地了解相关系统,并利用他们的好奇心和预测性分析心态来尽可能多地解释这些系统的操作和交互,以便即使在调整时也能保持它们平稳运行。如果你不能理解为什么没有人能够完全解释经济是如何运作的,数据科学就不适合你。
现在我们来到了我们必须的“跳出框框思考”的特征。我们不是在某种程度上鼓励每个人都这样做吗?我们当然知道。但我不是这个意思。
记住,数据科学家不是在真空中工作的;我们与各种类型的不同角色一起工作,在我们的旅程中遇到各种不同的领域专家。这些领域专家有特殊的方法来看待他们的特定领域,即使是在跳出框框思考的时候。作为一名数据科学家,拥有一套独特的技能和一种特殊类型的心态--我将在这里尽我所能以某种方式描述这一点--您可以从领域专家所在的盒子之外解决问题。你可以成为一双新的眼睛,用新的眼光看待问题--当然,前提是你足够好地理解问题。你的创造力将帮助你产生新的想法和观点。
这并不是要削弱领域专家;事实上恰恰相反。我们数据科学家是他们的支持,并带来了一套经过培训的技能来做我们所做的事情,我们(希望)能够在我们的支持角色中带来一个新的视角,为领域专家能够在他们所做的事情上出类拔萃做出贡献。这一新的视角将由数据科学家的创造性思维驱动,这种创造性与好奇心相结合,将导致能够提出问题并寻求答案。
当然,我们需要技术、统计和其他技能来跟进这些问题,但如果我们没有创造力去思考有趣和不明显的方法来调查并最终提供答案,这些技能就毫无用处了。这就是为什么数据科学家必须天生具有创造性。
每个人都需要能够与他人有效沟通,无论他们在生活中处于何种地位。数据科学家也没有什么不同。
但除此之外,数据科学家在向其他利益相关者解释他们的工作时,经常不得不做一些手把手的工作,这些利益相关者可能没有--也可能没有意愿--完全沉浸在统计分析电影宇宙™中。一个数据科学家必须能够从A点叙述某人到B点,即使这个人几乎不知道这两个点中的任何一个到底是什么。说白了,讲故事就是能够从一些数据和你的分析过程中编织出一个现实的叙事:我们是如何从这个到这个的。
这不仅仅是简单地陈述事实;数据科学家必须看到利益相关者在等式中的位置,并使叙述旅程相关--也许用有用的视觉或其他道具来帮助完成众所周知的交易。
这种讲故事不像虚构的讲故事;它更像是“花式解释”,或者提供一个为听者量身定制的直观解释。你不会在睡觉前给一个五岁的孩子讲斯蒂芬·金的故事,就像你不会向从事研发的人深究关于供应链指标的枯燥、冗长的叙述一样。注意你的听众。
这种讲故事在本质上也不具有说服力;是解释性的。我们不是数据政治家,我们是数据科学家。科学家为了使别人屈从于他们的意志而歪曲统计数据,这是没有好处的。把这个留给当选的官员。
我希望这有助于描绘一幅我认为是一个成功的数据科学家的重要特征的丰富画面。我祝你事业顺利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17