京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我最近写了一篇题为数据科学家、数据工程师和其他数据职业的文章,解释说,在这篇文章中,我尽了最大努力简明扼要地定义和区分了五种流行的数据相关职业。在那篇文章中,每一个职业都得到了非常高水平的单句总结,数据科学家被描述如下,以供参考:
数据科学家主要关注数据、从数据中提取的洞察力以及数据可以讲述的故事。
除了我为每个职业写的额外的几个段落之外,我试图提出一个单一的总体差异特性,其中五个可以一起工作成一个流程图,也许由一个有抱负的数据专业人员使用,以帮助确定哪个职业可能最适合他们。
我收到了一些读者的反馈,这些反馈表明,我过于关注预测分析,将其作为数据科学家职业的一个定义性特征,我对这一特征的依赖可能会让人觉得数据科学家比其他任何事情都更擅长预测分析--而其他数据专业人员可能根本不会这样做。
这种建设性的批评很自然地让我思考:数据科学家与其他数据专业人员的区别还在于什么?数据科学家使用的技术技能、特定的技术语言、系统和工具很多。数据科学家--以及其他各种专业人员--也有许多软技能,用于在他们的职业生涯中出类拔萃。但是,成功的数据科学家的一些固有特征是什么,要么是随着数据科学家进入这个行业而来的,要么是他们进入这个行业后可以发展的?
以下是我提出的五件事,作为一个整体,有助于将数据科学家与其他职业区分开来。
让我们首先指出,所有的数据科学家角色都是不同的,但它们都有一些共同的连接线程,希望这些点有助于连接这些线程中的一些线程。
这个特性的焦点是我受到一些抨击的原因。然而,我要在这里加倍说明,预测分析思维模式是数据科学家的主要定义特征之一,也许比任何其他特征都更重要。它是唯一的定义特性吗?当然不。应该在流程图中使用它来将数据科学家从所有其他职业中分离出来吗?回想起来,不,可能不。
数据科学家进行预测分析吗?绝对。非数据科学家也是吗?当然。但是,如果我把data Scientisht放在预测分析的一端,而把<在这里插入其他数据专业人员>放在另一端,我希望data Scientisht总是能落地。
但这不仅仅是预测分析在特定情况下的应用;这是一种心态。这不仅仅是一种分析性的心态(减去预测性的),而是一种总是考虑如何利用我们已经知道的东西来发现我们还不知道的东西的心态。这表明预测性是方程的一个组成部分。
在我看来,数据科学家的头脑中不仅仅有预测,但在这种心态下工作是定义角色的特征之一,也是许多其他职业,无论是与数据相关的还是其他职业,都不具备的特征。其他确实有这种特点的人可能会把它放在对该职业有价值的人名单的后面。
显然,利用我们所知道的来找出我们所不知道的是不够的。数据科学家必须对他们有一种其他角色不一定需要有的好奇心(注意,我没有说其他人绝对不有这种好奇心)。好奇心几乎是预测分析心态的另一面:当预测分析心态寻求用y解决x时,好奇心将首先确定y是什么。
天生的好奇心是成为一个有用的数据科学家所必需的,故事结束了。如果你是那种早上醒来一整天都不去想宇宙奇迹的人--在任何层面上--数据科学都不适合你。
在杀死它之前,好奇心是这只猫作为一名成功的数据科学家的漫长而成功的职业生涯的原因。
这里有一个深刻的哲理:世界是一个复杂的地方。一切都以某种方式联系在一起,远远超出了显而易见的范围,这导致了现实世界的层层复杂性。复杂系统与其他复杂系统相互作用,产生自己的额外复杂系统,宇宙也是如此。这个复杂的游戏不仅仅是认识到大局:大局在什么地方适合大局,等等?
但这不仅仅是哲学上的。这个现实世界的无限复杂网络被数据科学家所认识。他们感兴趣的是了解尽可能多的相关互动,无论是潜在的还是其他的,因为他们解决了他们的问题。他们寻找与情况相关的已知未知、已知未知和未知未知,理解任何给定的变化都可能在其他地方产生意想不到的后果。
数据科学家的工作是尽可能多地了解相关系统,并利用他们的好奇心和预测性分析心态来尽可能多地解释这些系统的操作和交互,以便即使在调整时也能保持它们平稳运行。如果你不能理解为什么没有人能够完全解释经济是如何运作的,数据科学就不适合你。
现在我们来到了我们必须的“跳出框框思考”的特征。我们不是在某种程度上鼓励每个人都这样做吗?我们当然知道。但我不是这个意思。
记住,数据科学家不是在真空中工作的;我们与各种类型的不同角色一起工作,在我们的旅程中遇到各种不同的领域专家。这些领域专家有特殊的方法来看待他们的特定领域,即使是在跳出框框思考的时候。作为一名数据科学家,拥有一套独特的技能和一种特殊类型的心态--我将在这里尽我所能以某种方式描述这一点--您可以从领域专家所在的盒子之外解决问题。你可以成为一双新的眼睛,用新的眼光看待问题--当然,前提是你足够好地理解问题。你的创造力将帮助你产生新的想法和观点。
这并不是要削弱领域专家;事实上恰恰相反。我们数据科学家是他们的支持,并带来了一套经过培训的技能来做我们所做的事情,我们(希望)能够在我们的支持角色中带来一个新的视角,为领域专家能够在他们所做的事情上出类拔萃做出贡献。这一新的视角将由数据科学家的创造性思维驱动,这种创造性与好奇心相结合,将导致能够提出问题并寻求答案。
当然,我们需要技术、统计和其他技能来跟进这些问题,但如果我们没有创造力去思考有趣和不明显的方法来调查并最终提供答案,这些技能就毫无用处了。这就是为什么数据科学家必须天生具有创造性。
每个人都需要能够与他人有效沟通,无论他们在生活中处于何种地位。数据科学家也没有什么不同。
但除此之外,数据科学家在向其他利益相关者解释他们的工作时,经常不得不做一些手把手的工作,这些利益相关者可能没有--也可能没有意愿--完全沉浸在统计分析电影宇宙™中。一个数据科学家必须能够从A点叙述某人到B点,即使这个人几乎不知道这两个点中的任何一个到底是什么。说白了,讲故事就是能够从一些数据和你的分析过程中编织出一个现实的叙事:我们是如何从这个到这个的。
这不仅仅是简单地陈述事实;数据科学家必须看到利益相关者在等式中的位置,并使叙述旅程相关--也许用有用的视觉或其他道具来帮助完成众所周知的交易。
这种讲故事不像虚构的讲故事;它更像是“花式解释”,或者提供一个为听者量身定制的直观解释。你不会在睡觉前给一个五岁的孩子讲斯蒂芬·金的故事,就像你不会向从事研发的人深究关于供应链指标的枯燥、冗长的叙述一样。注意你的听众。
这种讲故事在本质上也不具有说服力;是解释性的。我们不是数据政治家,我们是数据科学家。科学家为了使别人屈从于他们的意志而歪曲统计数据,这是没有好处的。把这个留给当选的官员。
我希望这有助于描绘一幅我认为是一个成功的数据科学家的重要特征的丰富画面。我祝你事业顺利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24