
关于数据科学家在金融服务领域的工作,最好的事情之一是用例的丰富程度和数据科学家可以对现实世界产生的影响。当然,所有面向客户的业务都有常见的应用程序,如个性化体验、有针对性的交叉销售优惠或防止客户流失的积极策略。但银行、保险公司和他们的金融技术挑战者以许多其他有趣和有影响力的方式使用数据和分析。
例子包括:
对许多数据科学家来说,第二个吸引力是数据集的广度和深度,可以用来产生有意义的见解。银行和保险公司通常可以获得大量的数据,如人口统计、交易和关系,无论是在宏观层面还是在个人客户层面。尽管对它们的使用有一些限制,但像这样的高质量数据集的可用性通常可以追溯到几年前,这可能是数据科学家在构建预测模型时的梦想。
金融服务公司在数据和技术上的支出的规模以及其数据生态系统的相对成熟度也可以使它们对数据科学家具有吸引力。例如,大多数银行将其年收入的10%以上用于技术。数据和分析支出是其中越来越重要的组成部分,对许多大型企业来说,每年很容易达到或超过数亿美元--这一数字是科技行业中除最大企业外的所有企业都无法比拟的。由于多年在数据上的花费,很多也拥有了相对成熟的数据团队。因此,数据科学家可能会发现已经建立良好的支持系统,并且不希望自己管理从数据管道到数据治理的所有事情。
最后,在大多数地区,银行、保险公司和金融机构通常是数据科学家的最佳收入来源。虽然它本身很有吸引力,但它也是一个有用的指标,表明数据科学在这些公司中的价值,以及它对长期职业生涯的影响。在至少一家主要的全球银行,首席数据和分析官现在直接向集团首席执行官报告。
当然,有一个陷阱。在银行和保险公司(尤其是较大的银行和保险公司)从事数据科学家工作的所有有趣之处,有时也会使其变得笨拙和令人沮丧。一些数据科学家将这些纯粹视为挑战;其他人也可能认为它们是发展自己并产生更大影响的机会。
鉴于数据和分析在行业中的高风险使用,有一个很高的信任标准来证明数据和模型在实际生活中的使用足够好。例如,如果一个数据科学家正在建立一个预测模型,可以用来拒绝某人的贷款或保险,或者将某人标记为潜在的洗钱者,那么他们可能应该期待大量的审查。
类似地,考虑到客户通常信任银行和保险公司提供他们生活中最亲密的方面--例如,他们的收入或他们的病史,数据科学家可以围绕数据可用性和可用性找到详细的控制。每个行业都存在关于数据隐私、主权、道德和安全的问题,但很少有其他行业在管理这些问题上花费如此多的时间和精力。
在数据和相关技术上的大量支出,以及由数据工程师、分析师和风险专家组成的资源丰富的团队,可以为数据科学家提供茁壮成长的肥沃土壤。但是,同样的因素也会导致丧失敏捷性。在许多情况下,这些可能会转化为数据科学家的限制性技术选择,或者在他们的工作真正出现在生产中之前,通过精心控制和移交的多步骤过程。让新加入银行业的人感到惊讶的一个特殊领域是,需要让一个独立的团队对所有重要模型进行正式验证--这一步骤可以为正常的模型生命周期增加几周甚至几个月的时间。
支撑上述所有挑战的是,金融服务业是全球监管最严格的行业之一。作为回应,大多数银行和保险公司建立了一个DNA,尤其是在2008年金融危机之后。在许多地区,银行和保险公司的高级经理对其雇主的行为负有个人责任,因此任何可能违反客户信任或监管要求的事情都要特别谨慎对待。数据和算法的使用勾选了所有的框。毫不奇怪,金融监管机构是第一批就负责任地使用数据和人工智能提出指导方针的国家之一--例如,在新加坡、香港、欧盟、英国和美国。
显然,不是每个数据科学家都会喜欢银行、保险公司,甚至是受监管的金融技术公司。但是,如果:
BIOS:Shameek Kunduis是从技术和商业战略角度来看人工智能的领先专家,他的大部分职业生涯都在推动金融服务业负责任地采用数据分析/AI。他是Truera的首席战略官和金融服务主管。他是英格兰银行人工智能公私论坛和经合组织人工智能全球伙伴关系的成员,也是新加坡金融管理局人工智能公平、道德、问责制和透明度指导委员会的成员。最近,Shameek是渣打银行的集团首席数据官,在那里他帮助银行在多个领域探索和采用人工智能(例如,信贷、金融犯罪合规、客户分析、监控)。
Divya Gopinath是TruEra的研究工程师,TruEra是一家专注于让人工智能可信和透明的公司。在加入之前,Divyacomplement在麻省理工学院获得了本科和硕士学位,她的研究重点是为医疗保健领域构建机器学习算法。Divya是值得信赖的人工智能《走向数据科学》的主要贡献者,专注于公平和解决机器学习模型中的偏见的主题。
Arridhana Ciptadiis是Truera工程团队的成员。他以前是蓝六边形创始团队的一员,在那里他是公司所有机器学习工作的技术负责人。在此之前,他是亚马逊Lab126的机器学习科学家,在那里他为亚马逊的各种产品开发机器学习和计算机视觉技术。Ciptadi拥有博士学位佐治亚理工学院计算机科学专业。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23