关于数据科学家在金融服务领域的工作,最好的事情之一是用例的丰富程度和数据科学家可以对现实世界产生的影响。当然,所有面向客户的业务都有常见的应用程序,如个性化体验、有针对性的交叉销售优惠或防止客户流失的积极策略。但银行、保险公司和他们的金融技术挑战者以许多其他有趣和有影响力的方式使用数据和分析。
例子包括:
对许多数据科学家来说,第二个吸引力是数据集的广度和深度,可以用来产生有意义的见解。银行和保险公司通常可以获得大量的数据,如人口统计、交易和关系,无论是在宏观层面还是在个人客户层面。尽管对它们的使用有一些限制,但像这样的高质量数据集的可用性通常可以追溯到几年前,这可能是数据科学家在构建预测模型时的梦想。
金融服务公司在数据和技术上的支出的规模以及其数据生态系统的相对成熟度也可以使它们对数据科学家具有吸引力。例如,大多数银行将其年收入的10%以上用于技术。数据和分析支出是其中越来越重要的组成部分,对许多大型企业来说,每年很容易达到或超过数亿美元--这一数字是科技行业中除最大企业外的所有企业都无法比拟的。由于多年在数据上的花费,很多也拥有了相对成熟的数据团队。因此,数据科学家可能会发现已经建立良好的支持系统,并且不希望自己管理从数据管道到数据治理的所有事情。
最后,在大多数地区,银行、保险公司和金融机构通常是数据科学家的最佳收入来源。虽然它本身很有吸引力,但它也是一个有用的指标,表明数据科学在这些公司中的价值,以及它对长期职业生涯的影响。在至少一家主要的全球银行,首席数据和分析官现在直接向集团首席执行官报告。
当然,有一个陷阱。在银行和保险公司(尤其是较大的银行和保险公司)从事数据科学家工作的所有有趣之处,有时也会使其变得笨拙和令人沮丧。一些数据科学家将这些纯粹视为挑战;其他人也可能认为它们是发展自己并产生更大影响的机会。
鉴于数据和分析在行业中的高风险使用,有一个很高的信任标准来证明数据和模型在实际生活中的使用足够好。例如,如果一个数据科学家正在建立一个预测模型,可以用来拒绝某人的贷款或保险,或者将某人标记为潜在的洗钱者,那么他们可能应该期待大量的审查。
类似地,考虑到客户通常信任银行和保险公司提供他们生活中最亲密的方面--例如,他们的收入或他们的病史,数据科学家可以围绕数据可用性和可用性找到详细的控制。每个行业都存在关于数据隐私、主权、道德和安全的问题,但很少有其他行业在管理这些问题上花费如此多的时间和精力。
在数据和相关技术上的大量支出,以及由数据工程师、分析师和风险专家组成的资源丰富的团队,可以为数据科学家提供茁壮成长的肥沃土壤。但是,同样的因素也会导致丧失敏捷性。在许多情况下,这些可能会转化为数据科学家的限制性技术选择,或者在他们的工作真正出现在生产中之前,通过精心控制和移交的多步骤过程。让新加入银行业的人感到惊讶的一个特殊领域是,需要让一个独立的团队对所有重要模型进行正式验证--这一步骤可以为正常的模型生命周期增加几周甚至几个月的时间。
支撑上述所有挑战的是,金融服务业是全球监管最严格的行业之一。作为回应,大多数银行和保险公司建立了一个DNA,尤其是在2008年金融危机之后。在许多地区,银行和保险公司的高级经理对其雇主的行为负有个人责任,因此任何可能违反客户信任或监管要求的事情都要特别谨慎对待。数据和算法的使用勾选了所有的框。毫不奇怪,金融监管机构是第一批就负责任地使用数据和人工智能提出指导方针的国家之一--例如,在新加坡、香港、欧盟、英国和美国。
显然,不是每个数据科学家都会喜欢银行、保险公司,甚至是受监管的金融技术公司。但是,如果:
BIOS:Shameek Kunduis是从技术和商业战略角度来看人工智能的领先专家,他的大部分职业生涯都在推动金融服务业负责任地采用数据分析/AI。他是Truera的首席战略官和金融服务主管。他是英格兰银行人工智能公私论坛和经合组织人工智能全球伙伴关系的成员,也是新加坡金融管理局人工智能公平、道德、问责制和透明度指导委员会的成员。最近,Shameek是渣打银行的集团首席数据官,在那里他帮助银行在多个领域探索和采用人工智能(例如,信贷、金融犯罪合规、客户分析、监控)。
Divya Gopinath是TruEra的研究工程师,TruEra是一家专注于让人工智能可信和透明的公司。在加入之前,Divyacomplement在麻省理工学院获得了本科和硕士学位,她的研究重点是为医疗保健领域构建机器学习算法。Divya是值得信赖的人工智能《走向数据科学》的主要贡献者,专注于公平和解决机器学习模型中的偏见的主题。
Arridhana Ciptadiis是Truera工程团队的成员。他以前是蓝六边形创始团队的一员,在那里他是公司所有机器学习工作的技术负责人。在此之前,他是亚马逊Lab126的机器学习科学家,在那里他为亚马逊的各种产品开发机器学习和计算机视觉技术。Ciptadi拥有博士学位佐治亚理工学院计算机科学专业。
相关:
数据分析咨询请扫描二维码
数据模型(Data Model)是对现实世界数据特征的抽象,用于描述一组数据的概念和定义。它从抽象层次上描述了系统的静态特征、动态 ...
2024-10-044. 区间估计 还以为你被上节课的内容唬住了~终于等到你,还好没放弃! 本节我们将说明两个问题:总体均值 的区间估计和总体比例 ...
2024-10-04大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-033. 数据分布 t分布、F分布和卡方分布是统计学中常用的三种概率分布,它们分别用于样本均值的推断、方差的比较和数据的拟合优度检 ...
2024-10-03大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-022. 描述性统计 上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。 我们描述一组 ...
2024-10-02大数据专业的毕业生可以选择多种就业方向和岗位,主要集中在数据分析、系统研发和应用开发三大领域。以下是一些具体的岗位: 大 ...
2024-10-011.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2024-10-01大数据的全球市场规模在 2023 年估计为 1850 亿美元,预计到 2030 年将达到 3834 亿美元,2023 年至 2030 年的复合年增长率为 11 ...
2024-09-30大数据分析是指收集、分析和处理大量数据以发现市场趋势、洞察力和模式,帮助公司做出更好的商业决策的过程。这些信息可以快速、 ...
2024-09-30大数据分析是当今世界一些最重要行业进步背后的推动力,包括医疗、政府和金融等领域。了解更多关于如何处理大数据以及开始时使用 ...
2024-09-30大数据已经成为日常生活不可或缺的一部分,影响着我们的活动。对大量数据的分析已经成为一个重要的行业,对大数据分析师的需求也 ...
2024-09-30数据分析师证书报名官网指南 数据分析师在现代企业中扮演着越来越重要的角色,掌握数据分析技能不仅能够提升个人职场竞争力,也 ...
2024-09-29大数据分析师培训学什么 课程简介 大数据分析师课程以大数据分析技术为主线,以大数据分析师为培养目标,从数据分析基础、linux ...
2024-09-29随着大数据在各行各业中的应用日益广泛,数据分析师这一职业变得越来越重要。作为一名数据分析师,不仅需要具备扎实的技术能力, ...
2024-09-29引言 在当今数字化转型的浪潮中,大数据分析师的角色变得愈发重要。作为这个领域的专业人士,拥有权威认证不仅能够提升个人职业 ...
2024-09-29数据架构师是企业中负责设计、规划和管理数据架构的关键角色。他们的职责广泛且复杂,涵盖了从数据模型设计到数据治理和管理的各 ...
2024-09-28数据分析专员在现代企业中扮演着至关重要的角色。他们通过数据驱动的洞察力帮助企业做出明智的决策。本文将详细探讨数据分析专员 ...
2024-09-28数据开发和数据分析是两个密切相关但有显著区别的领域。尽管它们在现代企业中都至关重要,但在定义、目标、流程、方法、技能要求 ...
2024-09-28数据分析是一个涉及多个领域的综合性学科,需要掌握多种技能和知识。本文将详细介绍数据分析专业课程的主要内容,帮助您全面了解 ...
2024-09-28