京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于数据科学家在金融服务领域的工作,最好的事情之一是用例的丰富程度和数据科学家可以对现实世界产生的影响。当然,所有面向客户的业务都有常见的应用程序,如个性化体验、有针对性的交叉销售优惠或防止客户流失的积极策略。但银行、保险公司和他们的金融技术挑战者以许多其他有趣和有影响力的方式使用数据和分析。
例子包括:
对许多数据科学家来说,第二个吸引力是数据集的广度和深度,可以用来产生有意义的见解。银行和保险公司通常可以获得大量的数据,如人口统计、交易和关系,无论是在宏观层面还是在个人客户层面。尽管对它们的使用有一些限制,但像这样的高质量数据集的可用性通常可以追溯到几年前,这可能是数据科学家在构建预测模型时的梦想。
金融服务公司在数据和技术上的支出的规模以及其数据生态系统的相对成熟度也可以使它们对数据科学家具有吸引力。例如,大多数银行将其年收入的10%以上用于技术。数据和分析支出是其中越来越重要的组成部分,对许多大型企业来说,每年很容易达到或超过数亿美元--这一数字是科技行业中除最大企业外的所有企业都无法比拟的。由于多年在数据上的花费,很多也拥有了相对成熟的数据团队。因此,数据科学家可能会发现已经建立良好的支持系统,并且不希望自己管理从数据管道到数据治理的所有事情。
最后,在大多数地区,银行、保险公司和金融机构通常是数据科学家的最佳收入来源。虽然它本身很有吸引力,但它也是一个有用的指标,表明数据科学在这些公司中的价值,以及它对长期职业生涯的影响。在至少一家主要的全球银行,首席数据和分析官现在直接向集团首席执行官报告。
当然,有一个陷阱。在银行和保险公司(尤其是较大的银行和保险公司)从事数据科学家工作的所有有趣之处,有时也会使其变得笨拙和令人沮丧。一些数据科学家将这些纯粹视为挑战;其他人也可能认为它们是发展自己并产生更大影响的机会。
鉴于数据和分析在行业中的高风险使用,有一个很高的信任标准来证明数据和模型在实际生活中的使用足够好。例如,如果一个数据科学家正在建立一个预测模型,可以用来拒绝某人的贷款或保险,或者将某人标记为潜在的洗钱者,那么他们可能应该期待大量的审查。
类似地,考虑到客户通常信任银行和保险公司提供他们生活中最亲密的方面--例如,他们的收入或他们的病史,数据科学家可以围绕数据可用性和可用性找到详细的控制。每个行业都存在关于数据隐私、主权、道德和安全的问题,但很少有其他行业在管理这些问题上花费如此多的时间和精力。
在数据和相关技术上的大量支出,以及由数据工程师、分析师和风险专家组成的资源丰富的团队,可以为数据科学家提供茁壮成长的肥沃土壤。但是,同样的因素也会导致丧失敏捷性。在许多情况下,这些可能会转化为数据科学家的限制性技术选择,或者在他们的工作真正出现在生产中之前,通过精心控制和移交的多步骤过程。让新加入银行业的人感到惊讶的一个特殊领域是,需要让一个独立的团队对所有重要模型进行正式验证--这一步骤可以为正常的模型生命周期增加几周甚至几个月的时间。
支撑上述所有挑战的是,金融服务业是全球监管最严格的行业之一。作为回应,大多数银行和保险公司建立了一个DNA,尤其是在2008年金融危机之后。在许多地区,银行和保险公司的高级经理对其雇主的行为负有个人责任,因此任何可能违反客户信任或监管要求的事情都要特别谨慎对待。数据和算法的使用勾选了所有的框。毫不奇怪,金融监管机构是第一批就负责任地使用数据和人工智能提出指导方针的国家之一--例如,在新加坡、香港、欧盟、英国和美国。
显然,不是每个数据科学家都会喜欢银行、保险公司,甚至是受监管的金融技术公司。但是,如果:
BIOS:Shameek Kunduis是从技术和商业战略角度来看人工智能的领先专家,他的大部分职业生涯都在推动金融服务业负责任地采用数据分析/AI。他是Truera的首席战略官和金融服务主管。他是英格兰银行人工智能公私论坛和经合组织人工智能全球伙伴关系的成员,也是新加坡金融管理局人工智能公平、道德、问责制和透明度指导委员会的成员。最近,Shameek是渣打银行的集团首席数据官,在那里他帮助银行在多个领域探索和采用人工智能(例如,信贷、金融犯罪合规、客户分析、监控)。
Divya Gopinath是TruEra的研究工程师,TruEra是一家专注于让人工智能可信和透明的公司。在加入之前,Divyacomplement在麻省理工学院获得了本科和硕士学位,她的研究重点是为医疗保健领域构建机器学习算法。Divya是值得信赖的人工智能《走向数据科学》的主要贡献者,专注于公平和解决机器学习模型中的偏见的主题。
Arridhana Ciptadiis是Truera工程团队的成员。他以前是蓝六边形创始团队的一员,在那里他是公司所有机器学习工作的技术负责人。在此之前,他是亚马逊Lab126的机器学习科学家,在那里他为亚马逊的各种产品开发机器学习和计算机视觉技术。Ciptadi拥有博士学位佐治亚理工学院计算机科学专业。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27