京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当你考虑你的第一份数据科学工作或你的下一个数据科学职位时,你会想问自己什么是重要的。对我来说,我在数据科学方面有过几个职位,这些是我认为在选择下一份工作时必须考虑的一些最关键的问题。
学习数据科学通常包括掌握机器学习算法,但有一个很大的部分在学术界经常被忽视,那就是这些算法的运算。原因可能是有许多不同的方法来部署您的模型,并且许多选项可能包括已经集成到您的业务中的昂贵的特定平台。由于这种可变性,学校或项目可能会选择不在教学大纲中包括操作,这是可以理解的。
话虽如此,您很可能想问这项工作是否是您作为数据科学家的责任,或者是否有一个专门的MLOps工程师(或机器学习工程师等)。当然,有些人可以做到这两个方面,并且更喜欢掌握创建和部署模型过程的两个部分,但是仅仅是专注于算法的数据科学家也是可以的。与你未来或现在的经理明确这个定义甚至更重要。
与上述考虑类似,您将想要询问您的团队中是否有SQL专家。一些数据科学职位几乎不需要SQL,而其他职位几乎每天都需要SQL。在您的面试中,您将希望缩小您可以期望执行的SQL的数量,以及您是否是唯一的SQL。
有时,还有其他人,如数据分析师、业务分析师或数据工程师,他们更像是一名专家,使用SQL。然而,在一些数据科学职位上,您将被要求在建模过程之前和之后查询您的数据。
在进入一个专业数据科学家角色之前,一次一个项目听起来似乎是一项简单的任务,但它可以很快变成一个全职项目。
对于任何一个特定项目,您都可以执行以下步骤:
数据科学的一些职位会有一个项目,只有一个人在上面工作,而在其他角色中,有几个人在同一个模型上工作。人们按照自己的节奏前进,与其他日子相比,有或多或少的效率,每天都可以享受或不享受与其他人在同一个项目上工作。
最终要由你来决定你喜欢什么,同样重要的是在进入一个角色之前知道你的期望是什么。
算法/模型创建的测试快得惊人。在开发一个模型并将其集成到您的业务中时,前后部分可能会占用大部分时间。
对于任何项目来说,时间线都可以波动,就像上面的其他考虑一样,它是关于期望的--需要多少工作才能获得有用的结果。
总的来说,重要的是要记住,当你接受数据科学角色(或任何角色)的面试时,你应该同样地面试他们,这些只是你可以问和提出的一些问题或考虑因素。此外,即使在当前的角色中,您仍然可以提出这些问题。
概括地说,在选择下一份数据科学工作之前,需要记住以下五点:
谢谢你的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12